Beyond Zoom Fatigue: Re-energize Yourself and Improve Learning
Posted: November 24, 2020 Filed under: behavior, computer, digital devices, educationj, health, posture, stress management | Tags: boredom, learning, mind-body, zoom fatigue 5 CommentsErik Peper and Amber Yang
“Instead of zoning out and being on my phone half the time. I felt more engaged in the class and like I was actually learning something.” -21 year old college student
Before the pandemic, roughly, two-thirds of all social interactions were face-to-face—and when the shelter-in-place order hit our communities, we were all faced with the task of learning how to engage virtually. The majority of students reported that taking online classes instead of in person classes is significantly more challenging. It is easier to be distracted and multitask online—for example, looking at Instagram, Facebook, Twitter, TikTok, texting, surfing the internet, responding to notifications, listening to music, or drifting to sleep. Hours of watching TV and/or streaming videos have conditioned many people to sit and take in information passively, which discourages them from actively responding or initiating. The information is rapidly forgotten when the next screen image or advertisement appears. Effectively engaging on Zoom requires a shift from passively watching and listening to being an active, creative participant.
Another barrier to virtual engagement is that communicating online does not engage all senses. A considerable amount of our communication is nonverbal—sounds, movement, visuals, physical structures, touch, and body language. Without these sensory cues, it can be difficult to feel socially connected on Zoom, Microsoft Teams, or Google Meet to sustain attention and to focus especially if there are many people in the class or meeting. Another challenge to virtual learning is that without the normal environment of a classroom, many students across the country are forced to learn in emotionally and/or physically challenging environments, which gets in the way of maintaining attention and focus. The Center for Disease Prevention (CDC) reported that anxiety disorder and depressive disorder have increased considerably in the United States during the COVID-19 pandemic (Leeb et al, 2020; McGinty et al, 2020). Social isolation, stay-at-home orders, and coping with COVID-19 are contributing factors affecting mental health especially for minority and ethnic youth. Stress, anxiety and depression can greatly affect students’ ability to learn and focus.
The task of teaching has also become more stressful since many students are not visible or appear still-faced and non-responsive. Teaching to non-responsive faces is significantly more stressful since the presenter receives no social feedback. The absence of social feedback during communication is extremely stressful. It is the basis of Trier Social stress test in which a person presents for five minutes to a group of judges who provide no facial or verbal feedback (Allen et al, 2016; Peper, 2020).
The Zoom experience especially in a large class can be a no win situation for the presenter and the viewer. To help resolve this challenge, we explored a strategy to increase student engagement and reduce social stress of the teacher. In this exploration, we asked students to rate their subjective energy level, attention and involvement during a Zoom conducted class. For the next Zoom class, they were asked to respond frequently with facial and body expressions to the presentation. For example, students would expressively shake their head no or yes and/or use facial expressions to signal to the teacher that they were engaged and listening. Other strategies included giving thumbs up or thumbs down, making sounds, and changing your body posture as a response to the presentation. Watch the superb non-judgmental instructions adapted for high school students by Amber Yang.
When college students purposely implement and increase their animated facial and body responses by 123% during Zoom classes, they report a significant increase in frequency of animation (ANOVA (F(1,70) = 30.66, p < .0001), energy level (ANOVA (F(1,70) = 28.96, p < .0001), attention (ANOVA (F(1,70) = 16.87, p = .0001) and involvement (ANOVA (F(1,69) = 10.70, p = .002) as compared just attending normally in class (see Figure 1).

Figure 1. Change in subjective energy, attention and involvement when the students significantly increase their facial and body animation by 123 % as compared to their normal non-expressive class behavior (Peper & Yang, in press).
“I never realized how my expressions affected my attention. Class was much more fun” -22 year old college student
“I can see how paying attention and participation play a large role in learning material. After trying to give positive facial and body feedback I felt more focused and I was taking better notes and felt I was understanding the material a bit better.” –28 year old medical student
These quotes are a few of the representative reports by more than 80% of the students who observed that being animated and responsive helped them to stay present and learn much more easily and improve retention of the materials. For a few students, it was challenging to be animated as they felt shy, self-conscious and silly and kept wondering what other students would think of them.
Having students compare two different ways of being in Zoom class is a useful assignment since it allows students to discover that being animated and responsive with facial/body expression improves learning. So often we forget how our body impacts our thoughts and emotions. For example, when students were asked to sit in a slouched position, they reported that it was much easier to recall hopeless, helpless, powerless and defeated memories and more difficult to perform mental math in the slouched position. While in the upright position it was easier to access positive empowering memories and easier to perform mental math (Peper et al, 2017; Peper et al, 2018).
Experience how body posture affects emotional recall and feeling (adapted from Alda, 2018).
1) Stand up and configure your body in a position that signals defeat, hopelessness and depression (slouching with the head down). While holding this position, recall a memory of hopelessness and defeat. Notice any negative emotions that arise from this.
2) Shift and configure your body into a position that signals joy, happiness and success (standing tall, looking up with a smile). While holding this position, recall a memory of joy and happiness. Notice any positive emotions that arise from this.
3) Configure your body in a position that signals defeat, hopelessness and depression (slouching with the head down). While holding this position, recall a joy, happiness and success. Do not change your body position. End this configuration after holding it for a little while.
4) Shift and your body in a position that signals joy, happiness and success (standing tall, looking up with a smile). While holding this position, recall a memory of hopelessness and defeat. Do not change your body position. End this configuration after holding it for a little while.
When body posture and expression are congruent with the evoked emotion, it is almost always easier to experience the emotions. On the other hand, when the body posture expression is the opposite of the evoked emotion (e.g., the body in a positive empowered stance while recalling hopeless defeated memories) it is much more difficult to evoke and experience the emotion. This same concept applies to learning. When slouching and lying on the bed while in a Zoom class, it is much more difficult to stay present and not drift off. On the other hand, when sitting erect and upright and actively responding to the presentation, the body presence/posture invites the brain to focus for optimized learning.
Conclusion
In a Zoom environment, it is easy to slouch, drift away, and become non-responsive—which can exacerbate zoom fatigue symptoms and also decrease our capacity to learn, focus, and feel connected with the people around us. Take charge and actively participate in class by sitting up, maintaining an empowered posture, and using nonverbal facial and body expressions to communicate. The important concept is not how you show your animation, but that you actively participate within the constraints of your own limitations. For example, if a person is paralyzed the person will benefit if they do the experience internally even though their body may not show any expression. By engaging our soma we optimize our learning experience as we face the day-to-day challenges of the pandemic and beyond.
I noticed I was able to retain information better as well as enjoy the class more when I used facial-body responses. At times, where I would try to wonder off into bliss, I would catch myself and try to actively engage in the class with body movements even if there is no discussion. Animated face/body was a better learning experience. –21-year old college student.
References
Peper, E. (October 13, 2020). Breaking the social bond: The immobilized face. The Peper Perspective.
Peper, E., Wilson, V.E., Martin, M., Rosengard, E., & Harvey, R. (unpublished). Avoid Zoom fa
Resolve Eyestrain and Screen Fatigue
Posted: June 29, 2020 Filed under: Breathing/respiration, computer, digital devices, ergonomics, Exercise/movement, health, laptops, Neck and shoulder discomfort, Pain/discomfort, relaxation, stress management, Uncategorized, vision | Tags: blurry vision, computer vision syndrome, dry eyes, eyestrain, near vision stress, zoom fatigue 10 CommentsAdapted from: Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.
Forty percent of adults and eighty percent of teenagers report experiencing significant visual symptoms (eyestrain, blurry vision, dry eyes, headaches, and exhaustion) during and immediately after viewing electronic displays. These ‘technology-associated overuse’ symptoms are often labeled as digital eyestrain or computer vision syndrome (Rosenfield, 2016; Randolph & Cohn, 2017). Even our distant vision may be affected— after working in front of a screen for hours, the world looks blurry. At the same time, we may experience an increase in neck, shoulders and back discomfort. These symptoms increase as we spend more hours looking at computer screens, laptops, tablets, e-readers, gaming consoles, and cellphones for work, taking online classes, watching streaming videos for entertainment, and keeping connected with friends and family (Borhany et al, 2018; Turgut, 2018; Jensen et al, 2002).
Eye, head, neck, shoulder and back discomfort are partly the result of sitting too long in the same position and attending to the screen without taking short physical and vision breaks, moving our bodies and looking at far objects every 20 minutes or so. The obvious question is, “Why do we stare at and are captured by, the screen?” Two answers are typical: (1) we like the content of what is on the screen; and, (2) we feel compelled to watch the rapidly changing visual scenes.
From an evolutionary perspective, our sense of vision (and hearing) evolved to identify predators who were hunting us, or to search for prey so we could have a nice meal. Attending to fast moving visual changes is linked to our survival. We are unaware that our adaptive behaviors of attending to a visual or auditory signals activate the same physiological response patterns that were once successful for humans to survive–evading predictors, identifying food, and discriminating between friend or foe. The large and small screen (and speakers) with their attention grabbing content and notifications have become an evolutionary trap that may lead to a reduction in health and fitness (Peper, Harvey & Faass, 2020).
Near vision stress
To be able to see the screen, the eyes need to converge and accommodate. To converge, the extraocular muscles of the eyes tighten; to focus (accomodation), the ciliary muscle around the lens tighten to increase the curvature of the lens. This muscle tension is held constant as long as we look at the screen. Overuse of these muscles results is near vision stress that contributes to computer vision syndrome, development of myopia in younger people, and other technology-associated overuse syndromes (Sherwin et al, 2012; Enthoven et al, 2020).
Continually overworking the visual muscles related to convergences increases tension and contributes to eyestrain. While looking at the screen, the eye muscles seldom have the chance to relax. To function effectively, muscles need to relax /regenerate after momentary tightening. For the eye muscles to relax, they need to look at the far distance– preferably objects green in color. As stated earlier, the process of distant vision occurs by relaxing the extraocular muscles to allow the eyes to diverge along with relaxing the ciliary muscle to allow the lens to flatten. In our digital age, where screen of all sizes are ubiquitous, distant vision is often limited to the nearby walls behind a screen or desk which results in keeping the focus on nearby objects and maintaining muscular tension in the eyes.
As we evolved, we continuously alternated between between looking at the far distance and nearby areas for food sources as well as signals indicating danger. If we did not look close and far, we would not know if a predator was ready to attack us. Today we tend to be captured by the screens. Arguably, all media content is designed to capture our attention such as data entry tasks required for employment, streaming videos for entertainment, reading and answering emails, playing e-games, responding to text notifications, looking at Instagram and Snapchat photos and Tiktok videos, scanning Tweets and using social media accounts such as Facebook. We are unaware of the symptoms of visual stress until we experience symptoms. To illustrate the physiological process that covertly occurs during convergence and accommodation, do the following exercise.
Sit comfortably and lift your right knee a few inches up so that the foot is an inch above the floor. Keep holding it in this position for a minute…. Now let go and relax your leg.
A minute might have seemed like a very long time and you may have started to feel some discomfort in the muscles of your hip. Most likely, you observed that when you held your knee up, you most likely held your breath and tightened your neck and back. Moreover, to do this for more than a few minutes would be very challenging.
Lift your knee up again and notice the automatic patterns that are happening in your body.
For muscles to regenerate they need momentary relaxation which allows blood flow and lymph flow to occur. By alternately tensing and relaxing muscles, they can work more easily for longer periods of time without experiencing fatigue and discomfort (e.g., we can hike for hours but can only lift our knee for a few minutes).
Solutions to relax the eyes and reduce eye strain
- Reestablish the healthy evolutionary pattern of alternately looking at far and near distances to reduce eyestrain, such as:
- Look out through a window at a distant tree for a moment after reading an email or clicking link.
- Look up and at the far distance each time you have finished reading a page or turn the page over.
- Rest and regenerate your eyes with palming. While sitting upright, place a pillow or other supports under our elbows so that your hands can cover your closed eyes without tensing the neck and shoulders.
- Cup the hands so that there is no pressure on your eyeballs, allow the base of the hands to touch the cheeks while the fingers are interlaced and resting your forehead.
- Close your eyes, imagine seeing black. Breathe slowly and diaphragmatically while feeling the warmth of the palm soothing the eyes. Feel your shoulders, head and eyes relaxing. Palm for 5 minutes while breathing at about six breaths per minute through your nose. Then stretch and go back to work.
Palming is one of the many practices that improves vision. For a comprehensive perspective and pragmatic exercises to reduce eye strain, maintain and improve vision, see the superb book by Meir Schneider, PhD., L.M.T., Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement.
Increased sympathetic arousal
Seeing the changing stimuli on the screen evokes visual attention and increases sympathetic arousal. In addition, many people automatically hold their breath when they see novel visual or hear auditory signals; since, they trigger a defense or orienting response. At the same time, without awareness, we may tighten our neck and shoulder muscles as we bring our nose literally to the screen. As we attend and concentrate to see what is on the screen, our blinking rate decreases significantly. From an evolutionary perspective, an unexpected movement in the periphery could be a snake, a predator, a friend or foe and the body responds by getting ready: freeze, fight or flight. We still react the same survival responses. Some of the physiological reactions that occur include:
- Breath holding or shallow breathing. These often occur the moment we receive a text notification, begin concentrating and respond to the messages, or start typing or mousing. Without awareness, we activate the freeze, flight and fight response. By breath holding or shallow breathing, we reduce or limit our body movements, effectively becoming a non-moving object that is more difficult to see by many animal predators. In addition, during breath holding, hearing become more acute because breathing noises are effectively reduced or eliminated.
- Inhibition of blinking. When we blink it is another movement signal that in earlier times could give away our position. In addition, the moment we blink we become temporarily blind and cannot see what the predator could be doing next.
- Increased neck, shoulder and back tension. The body is getting ready for a defensive fight or avoidance flight.
Experience some of these automatic physiological responses described above by doing the following two exercises.
Eye movement neck connection: While sitting up and looking at the screen, place your fingers on the back of the neck on either side of the cervical spine just below the junction where the spine meets the skull.
Feel the muscles of neck along the spine where they are attaching to the skull. Now quickly look to the extreme right and then to the extreme left with your eyes. Repeat looking back and forth with the eyes two or three times.
What did you observe? Most likely, when you looked to the extreme right, you could feel the right neck muscles slightly tightening and when you looked the extreme left, the left neck muscles slightly tightening. In addition, you may have held your breath when you looked back and forth.
Focus and neck connection: While sitting up and looking at the screen, place your fingers on the back of the neck as you did before. Now focus intently on the smallest size print or graphic details on the screen. Really focus and concentrate on it and look at all the details.
What did you observe? Most likely, when you focused on the text, you brought your head slightly forward and closer to the screen, felt your neck muscles tighten, and possibly held your breath or started to breathe shallowly.
As you concentrated, the automatic increase in arousal, along with the neck and shoulder tension and reduced blinking contributes to developing discomfort. This can become more pronounced after looking at screens to detailed figures, numerical data, characters and small images for hours (Peper, Harvey & Tylova, 2006; Peper & Harvey, 2008; Waderich et al, 2013).
Staying alert, scanning and reacting to the images on a computer screen or notifications from text messages, can become exhausting. in the past, we scanned the landscape, looking for information that will help us survive (predators, food sources, friend or foe) however today, we react to the changing visual stimuli on the screen. The computer display and notifications have become evolutionary traps since they evoke these previously adaptive response patterns that allowed us to survive.
The response patterns occur mostly without awareness until we experience discomfort. Fortunately, we can become aware of our body’s reactions with physiological monitoring which makes the invisible visible as shown in the figure below (Peper, Harvey & Faass, 2020).
Representative physiological patterns that occur when working at a computer, laptop, tablet or cellphone are unnecessary neck and shoulder tension, shallow rapid breathing, and an increase in heart rate during data entry. Even when the person is resting their hands on the keyboard, forearm muscle tension, breathing and heart rate increased.
Moreover, muscle tension in the neck and shoulder region also increased, even when those muscles were not needed for data entry task. Unfortunately, this unnecessary tension and shallow breathing contributes to exhaustion and discomfort (Peper, Harvey & Faass, 2020).
With biofeedback training, the person can learn to become aware and control these dysfunctional patterns and prevent discomfort (Peper & Gibney, 2006; Peper et, 2003). However, without access to biofeedback monitoring, assume that you respond similarly while working. Thus, to prevent discomfort and improve health and performance, implement the following.
- Practice breathing lower and slower to reduce sympathetic activation. Every few minutes remember to breathe slowly in and out through the nose. See the following blogs for more detailed instructions:
- Blink many times. Blink each time you click on a link, after typing a paragraph or after entering a few numbers.
- Get up, move, stretch and wiggle.
- Every few minutes do a small movement such as rotating your shoulders, dropping your hands to your lap.
- Every twenty minutes get up, stretch and walk around to reduce the chronic muscle tension.
- Install the free Stretch Break software on your computer or laptop to remind you to stretch… and then shows you how. Download free version from: https://stretchbreak.com/.
- Use small portable muscle biofeedback devices to learn awareness of the covert muscle tension and how to work without unnecessary muscle tension. For detailed training procedures see the free downloadable book by Erik Peper and Katherine Gibney, Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training.
Finally, for a comprehensive overview based on an evolutionary perspective that explains why TechStress develops, why digital addiction occurs. and what can be done to prevent discomfort and improve health and performance, see our new book by Erik Peper, Richard Harvey and Nancy Faass, Tech Stress-How Technology is Hijack our Lives, Strategies for Coping and Pragmatic Ergonomics.
References
Peper, E. & Gibney, K. (2006). Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. The Biofeedback Federation of Europe. Download free PDF version of the book: http://bfe.org/helping-clients-who-are-working-from-home/
Schneider, M. (2016). Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement. Berkeley: North Atlantic Books. https://self-healing.org/shop/books/vision-for-life-2nd-ed
Turgut, B. (2018). Ocular Ergonomics for the Computer Vision Syndrome. Journal Eye and Vision, 1(2).