Why do I have neck and shoulder discomfort at the computer?

Adapted from the upcoming book, TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics, by Erik Peper, Richard Harvey and Nancy Faass.shoulder pain

While working in front of screens, many of us suffer from Zoom/screen fatigue, iNeck, shoulder and back discomfort, tired eyes, exhaustion and screen addiction (Peper, 2020; Fosslien & Duffy, 2020; So, Cheng & Szeto, 2017; Peper & Harvey, 2018). As we work, our shoulders and forearms tense and we are often not aware of this until someone mentions it. Many accept the discomfort and pain as the cost of doing work–not realizing that it may be possible to work without pain.

Observe how you and coworkers work at the computer, laptop or cellphone. Often we bring our noses close to the screen in order to the text more clearly and raise our shoulders when we perform data entry and use the mouse. This unaware muscle tension can be identified with physiological recording of the muscles electrical activity when they contract (electromyography) (Peper & Gibney, 2006; Peper, Harvey & Tylova, 2006). In most cases, when we rest our hands on our laps the muscle tension is low but the moment we even rest our hands on the keyboard or when we begin to type or mouse, our muscles may tighten, as shown in Figure 1. The muscle activity will also depend on the person’s stress level, ergonomic arrangement and posture.

EMGFigure 1. Muscle tension from the shoulder and forearm increased without any awareness when the person rested their hands on the keyboard (Rest Keyboard) and during typing and mousing. The muscles only relaxed when the hands were resting on their lap (Rest Lap) (reproduced by permission from Peper, Harvey, and Faass, 2020).

Stop reading from your screen and relax your shoulders.  Did you feel them slightly drop and relax?

If you experienced this release of tension and relaxation in the shoulders, then you were tightening your shoulders muscles without awareness. It is usually by the end of the day that we experience stiffness and discomfort. Do the following exercise as guided by the video or described in the text below to experience how discomfort and pain develop by maintaining low-level muscle tension.

While sitting, lift your right knee two inches up so that the foot is about two inches away from the floor. Keep holding the knee up in this position. Did you notice your breathing stopped when you lifted your knee? Are you noticing increasing tension and discomfort or even pain?  How much longer can you lift the knee up?

Let go, relax and observe how the discomfort dissipates.

Reasons for the discomfort

The discomfort occurred because your muscles were contracted, which inhibited the blood and lymph flow through the tissue. When your muscles contracted to lift your knee, the blood flow in those muscles was reduced. Only when your muscles relaxed could enough blood flow occur to deliver nutrients and oxygen as well as remove the waste products of metabolism (Wan et al, 2017). From a physiological perspective, muscles work most efficiently when they alternately contract and relax. For example, most people can walk without discomfort since their muscles contract and relax with each step.  However, you could  hold your knee up for a few minutes before experiencing discomfort in those same muscles.

How to prevent discomfort.

To prevent discomfort and optimize health, apply the same concept of alternating tensing and  relaxing to your neck, shoulder, back and arm muscles while working. Every few minutes move your arms and shoulders and let them relax. Interrupt the static sitting position with movement. If you need reminders to get up and move your body during the workday or long periods sitting in front of a device, you can download and install the free app, StretchBreak.

For more information, read and apply the concepts described in our upcoming book, TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. The book explains why TechStress develops, why digital addiction occurs, and what you can do to prevent discomfort, improve health and enhance performance. Order the book from Amazon and receive it August 25th. Alternatively,  sign up with the publisher and receive a 30% discount when the book is published August 25th. https://www.northatlanticbooks.com/shop/tech-stress/

book cover

References

Fosslien, L. & Duffy, M. W. (2020). How to combat Zoom fatigue. Harvard Business Review. April 29, 2020.

Peper, E. (2020). Resolve eye strain and screen fatigue. The peperperspective ideas on illness, health and well-being. Blog published June 29, 2020. 

Peper, E. & Gibney, K. H. (2006). Muscle Biofeedback at the Computer: A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. Amersfoort: The Netherlands: Biofeedback Foundation of Europe. ISBN 0-9781927-0-2. Free download of the the book: http://bfe.org/helping-clients-who-are-working-from-home/

Peper, E. & Harvey, R. (2018). Digital addiction: increased loneliness, depression, and anxiety. NeuroRegulation5(1),3–8

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Harvey, R. & Tylova, H. (2006). Stress protocol for assessing computer related disorders.  Biofeedback. 34(2), 57-62.

So, B.C.L., Cheng, A.S.K., & Szeto, G.P.Y. (2017). Cumulative IT use is associated with psychosial stress factors and musculoskeletal symptoms. Int. J. Environ. Res. Public Health 201714(12), 1541

Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y., & Liu, X. (2017). Muscle fatigue: general understanding and treatment. Experimental & molecular medicine49(10), e384. https://doi.org/10.1038/emm.2017.194

 


Resolve Eyestrain and Screen Fatigue

Adapted from: Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

eyes
Forty percent of adults and eighty percent of teenagers report experiencing significant visual symptoms (eyestrain, blurry vision, dry eyes, headaches, and exhaustion) during and immediately after viewing electronic displays. These ‘technology-associated overuse’ symptoms are often labeled as digital eyestrain or computer vision syndrome (Rosenfield, 2016; Randolph & Cohn, 2017). Even our distant vision may be affected— after working in front of a screen for hours, the world looks blurry. At the same time, we may experience an increase in neck, shoulders and back discomfort. These symptoms increase as we spend more hours looking at computer screens, laptops, tablets, e-readers, gaming consoles, and cellphones for work, taking online classes, watching streaming videos for entertainment, and keeping connected with friends and family (Borhany et al, 2018; Turgut, 2018; Jensen et al, 2002).

Eye, head, neck, shoulder and back discomfort are partly the result of sitting too long in the same position and attending to the screen without taking short physical and vision breaks, moving our bodies and looking at far objects every 20 minutes or so.  The obvious question is, “Why do we stare at and are captured by, the screen?”  Two answers are typical: (1) we like the content of what is on the screen; and, (2) we feel compelled to watch the rapidly changing visual scenes.

From an evolutionary perspective, our sense of vision (and hearing) evolved to identify predators who were hunting us, or to search for prey so we could have a nice meal.  Attending to fast moving visual changes is linked to our survival.  We are unaware that our adaptive behaviors of attending to a visual or auditory signals activate the same physiological response patterns that were once successful for humans to survive–evading  predictors,  identifying food, and discriminating between friend or foe. The large and small screen (and speakers) with their attention grabbing content and notifications have become an evolutionary trap that may lead to a reduction in health and fitness (Peper, Harvey & Faass, 2020).

Near vision stress

To be able to see the screen, the eyes need to converge and accommodate. To converge,  the extraocular muscles of the eyes tighten; to focus (accomodation), the ciliary muscle around the lens tighten to increase the curvature of the lens.  This muscle tension is held constant as long as we look at the screen. Overuse of these muscles results is near vision stress that contributes to computer vision syndrome, development of myopia in younger people, and other technology-associated overuse syndromes (Sherwin et al, 2012; Enthoven et al, 2020).

Continually overworking the visual muscles related to convergences increases tension and contributes to eyestrain. While looking at the screen, the eye muscles seldom have the chance to relax.  To function effectively, muscles need to relax /regenerate after momentary tightening. For the eye muscles to relax, they need to look at the far distance– preferably objects green in color. As stated earlier, the process of  distant vision occurs by relaxing the extraocular muscles to allow the eyes to diverge along with relaxing the ciliary muscle to allow the lens to flatten.  In our digital age, where screen of all sizes are ubiquitous, distant vision is often limited to the nearby walls behind a screen or desk which results in keeping the focus on nearby objects and  maintaining muscular tension in the eyes.

As we evolved, we continuously alternated between between looking at the far distance and nearby areas for food sources as well as signals indicating danger. If we did not look close and far, we would not know if a predator was ready to attack us.  Today we tend to be captured by the screens.  Arguably, all media content is designed to capture our attention such as data entry tasks required for employment, streaming videos for entertainment, reading and answering emails, playing e-games, responding to text notifications, looking at Instagram and Snapchat photos and Tiktok videos, scanning Tweets and using social media accounts such as Facebook. We are unaware of the symptoms of visual stress until we experience symptoms. To illustrate the physiological process that covertly occurs during convergence and accommodation, do the following exercise.

Sit comfortably and lift your right knee a few inches up so that the foot is an inch above the floor.  Keep holding it in this position for a minute…. Now let go and relax your leg.

A minute might have seemed like  a very long time and you may have started to feel some discomfort in the muscles of your hip.  Most likely, you observed that when you held your knee up, you most likely held your breath and tightened your neck and back. Moreover, to do this for more than a few minutes would be very challenging. 

Lift your knee up again and notice the automatic patterns that are happening in your body. 

For muscles to regenerate they need momentary relaxation which allows blood flow and lymph flow to occur. By alternately tensing and relaxing muscles, they can work more easily for longer periods of time without experiencing fatigue and discomfort (e.g., we can hike for hours but can only lift our knee for a few minutes).

Solutions to relax the eyes and reduce eye strain 

  • Reestablish the healthy evolutionary pattern of alternately looking at far and near distances to reduce eyestrain, such as:
    • Look out through a window at a distant tree for a moment after reading an email or clicking link.
    • Look up and at the far distance each time you have finished reading a page or turn the page over.
  • Rest and regenerate your eyes with palming. While sitting upright, place a pillow or other supports under our elbows so that your hands can cover your closed eyes without tensing the neck and shoulders.palming
    • Cup the hands so that there is no pressure on your eyeballs, allow the base of the hands to touch the cheeks while the fingers are interlaced and resting your forehead.
    • Close your eyes, imagine seeing black. Breathe slowly and diaphragmatically while feeling the warmth of the palm soothing the eyes. Feel your shoulders, head and eyes relaxing. Palm for 5 minutes while breathing at about six breaths per minute through your nose.  Then stretch and go back to work.

Palming is one of the many practices that improves vision. For a comprehensive perspective and pragmatic exercises to reduce eye strain, maintain and improve vision, see the superb book by Meir Schneider, PhD., L.M.T., Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement.

Increased sympathetic arousal

Seeing the changing stimuli on the screen evokes visual attention and increases sympathetic arousal. In addition, many people automatically hold their breath when they see novel visual or hear auditory signals; since, they trigger a defense or orienting response. At the same time, without awareness,  we may tighten our neck and shoulder  muscles as we bring our nose literally to the screen.  As we attend and concentrate to see what is on the screen, our blinking rate decreases significantly.  From an evolutionary perspective, an unexpected movement in the periphery could be a snake, a predator, a friend or foe and the body responds by getting ready: freeze, fight or flight. We still react the same survival responses. Some of the physiological reactions that occur include:

  • Breath holding or shallow breathing. These often occur the moment we receive a text notification, begin concentrating and respond to the messages, or start typing or mousing.  Without awareness,  we activate the freeze, flight and fight response. By breath holding or shallow breathing, we reduce or limit our body movements, effectively becoming a non-moving object that is more difficult to see by many animal predators.  In addition, during breath holding, hearing become more acute because breathing noises are effectively reduced or eliminated.
  • Inhibition of blinking. When we blink it is another movement signal that in earlier times could give away our position. In addition, the moment we blink we become temporarily blind and cannot see what the predator could be doing next.
  • Increased neck, shoulder and back tension. The body is getting ready for a defensive fight or avoidance flight.

Experience some of these automatic physiological responses described above by doing the following two exercises.

Eye movement neck connection:  While sitting up and looking at the screen, place your fingers on the back of the neck on either side of the cervical spine just below the junction where the spine meets the skull.

neck

Feel the muscles of neck along the spine where they are attaching to the skull. Now quickly look to the extreme right and then to the extreme left with your eyes. Repeat looking back and forth with the eyes two or three times.

What did you observe?  Most likely, when you looked to the extreme right, you could feel the right neck muscles slightly tightening and when you looked the extreme left, the left neck muscles slightly tightening.  In addition, you may have held your breath when you looked back and forth.

Focus and neck connection:  While sitting up and looking at the screen, place your fingers on the back of the neck as you did before. Now focus intently on the smallest size print or graphic details on the screen.  Really focus and concentrate on it and look at all the details.

What did you observe?  Most likely, when you focused on the text, you brought your head slightly forward and closer to the screen, felt your neck muscles tighten,  and possibly held your breath or started to breathe shallowly.

As you concentrated, the automatic increase in arousal, along with the neck and shoulder tension and reduced blinking contributes to developing discomfort. This can become more pronounced after looking at screens to detailed figures, numerical data, characters and small images for hours (Peper, Harvey & Tylova, 2006; Peper & Harvey, 2008; Waderich et al, 2013).

Staying alert, scanning  and reacting to the images on a computer screen or notifications from text messages, can become exhausting. in the past, we scanned the landscape, looking for information that will help us survive (predators, food sources, friend or foe)  however today, we react to the changing visual stimuli on the screen. The computer display and notifications have become evolutionary traps since they evoke these previously adaptive response patterns that allowed us to survive.

The response patterns occur mostly without awareness until we experience discomfort. Fortunately, we  can become aware of our body’s reactions with physiological monitoring which makes the invisible visible as shown in the figure below (Peper, Harvey & Faass, 2020).

biofeedback

Representative physiological patterns that occur when working at a computer, laptop, tablet or cellphone are unnecessary neck and shoulder tension, shallow rapid breathing, and an increase in heart rate during data entry. Even when the person is resting their hands on the keyboard, forearm muscle tension, breathing and heart rate increased.

Moreover, muscle tension in the neck and shoulder region also increased, even when those muscles were not needed for data entry task.  Unfortunately, this unnecessary tension and shallow breathing contributes to exhaustion and discomfort (Peper, Harvey & Faass, 2020).

With biofeedback training, the person can learn to become aware and control these dysfunctional patterns and prevent discomfort (Peper & Gibney, 2006; Peper et, 2003).  However, without access to biofeedback monitoring, assume that you respond similarly while working. Thus, to prevent discomfort and improve health and performance, implement the following.

Finally, for a comprehensive overview based on an evolutionary perspective that explains why TechStress develops, why digital addiction occurs. and what can be done to prevent discomfort and improve health and performance, see our new book by Erik Peper, Richard Harvey and Nancy Faass, Tech Stress-How Technology is Hijack our Lives, Strategies for Coping and Pragmatic Ergonomics.

book cover

References

Borhany, T., Shahid, E., Siddique, W. A., & Ali, H. (2018). Musculoskeletal problems in frequent computer and internet users. Journal of family medicine and primary care7(2), 337–339. 

Enthoven, C. A., Tideman, W.L., Roel of Polling, R.J.,Yang-Huang, J., Raat, H., & Klaver, C.C.W. (2020). The impact of computer use on myopia development in childhood: The Generation R study. Preventtive Medicine, 132, 105988.

Jensen, C., Finsen, L., Sogaard, K & Christensen, H. (2002). Musculoskeletal symptoms and duration of computer and mouse use,  International Journal of Industrial Ergonomics, 30(4-5), 265-275.

Peper, E. & Gibney, K. (2006). Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. The Biofeedback Federation of Europe. Download free PDF version of the book:  http://bfe.org/helping-clients-who-are-working-from-home/

Peper, E. & Harvey, R. (2008). From technostress to technohealth.  Japanese Journal of Biofeedback Research, 35(2), 107-114.

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Harvey, R. & Tylova, H. (2006). Stress protocol for assessing computer related disorders.  Biofeedback. 34(2), 57-62. 

Peper, E., Wilson, V.S., Gibney, K.H., Huber, K., Harvey, R. & Shumay. (2003). The Integration of Electromyography (sEMG) at the Workstation:  Assessment, Treatment and Prevention of Repetitive Strain Injury (RSI). Applied Psychophysiology and Biofeedback, 28 (2), 167-182.

Randolph, S.A. & Cohn, A. (2017).  Computer vision syndrome. Workplace, Health and Safety, 65(7), 328.

Rosenfield, M. (2016). Computer vision syndrome (a.k.a. digital eye strain). Optometry in Practice, 17(1), 1 1 – 10. 

Schneider, M. (2016). Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement. Berkeley: North Atlantic Books. https://self-healing.org/shop/books/vision-for-life-2nd-ed

Sherwin, J.C., Reacher, M.H., Keogh, R. H., Khawaja, A. P., Mackey, D.A.,& Foster, P. J. (2012). The association between time spent outdoors and myopia in children and adolescents. Ophthalmology,119(10), 2141-2151.

Turgut, B. (2018). Ocular Ergonomics for the Computer Vision Syndrome. Journal Eye and Vision, 1(2).

Waderich, K., Peper, E., Harvey, R., & Sara Sutter. (2013). The psychophysiology of contemporary information technologies-Tablets and smart phones can be a pain in the neck. Presented at the 44st Annual Meeting of the Association for Applied Psychophysiology and Biofeedback. Portland, OR.

 

 


Do nose breathing FIRST in the age of COVID-19

nose breathingBreathing affects every cell of our body and should be the first intervention strategy to improve physical and mental well-being (Peper & Tibbetts, 1994). Breathing patterns are much more subtle than indicated by the respiratory function tests (spirometry, lung capacity, airway resistance, diffusing capacity and blood gas analysis) or commonly monitored in medicine and psychology (breathing rate, tidal volume, peak flow, oxygen saturation, end-tidal carbon dioxide) (Gibson, Loddenkemper, Sibille & Lundback, 2019).

When a person feels safe, healthy and peaceful, the breathing is effortless and the breath flows in and out of the nose without awareness. Functional and dysfunctional breathing patterns includes an assessment of the whole body pattern by which breathing occurs such as nose versus mouth breathing, alternation of nasal patency, the rate of  air flow rate during inhalation and exhalation, the length of time during inhalation and exhalation, the post exhalation pause time. the pattern of transition between inhaling and exhaling,  the location  and timing of expansion in the truck, the range of diaphragmatic movement, and the subjective quality of breathing effort (Gilbert, 2019; Peper, Gilbert,  Harvey & Lin, 2015; Nestor, 2020).

Breathing patterns affect sympathetic and parasympathetic nervous systems (Levin & Swoap, 2019).  Inhaling tends to activate the sympathetic nervous system (fight/flight response) while exhaling activates the parasympathetic nervous system (rest and repair response) (Lehrer & Gevirtz, 2014). To observe how breathing affects your heart rate, monitor your pulse from either the radial artery in the wrist or the carotid artery in your neck as shown in Figure 1 and practice the following.radial and carotid arteru

After sensing the baseline rate of your pulse, continue to feel your radial artery pulse in your wrist or at the carotid artery in your neck. Then inhale for the count of four hold for a moment and gently exhale for the count of 5 or 6. Repeat two or three times. 

Most people observe that during inhalation, their heart rate increased (sympathetic activation for action) and during exhalation, the heart rate decreases (restoration during safety).

Nearly everyone who is anxious tends to breathe rapidly and shallowly or when stressed, unknowingly gasp or holds their breath–they may even freeze up and blank out (Peper et al, 2016). In addition, many people habitually breathe through their mouth instead of their nose and wake up tired with a dry mouth with bad breath. Mouth breathing combined with chest breathing in the absence of slower diaphragmatic breathing (the lower ribs and abdomen expand during inhalation and constrict during exhalation) is a risk factor for disorders such as irritable bowel syndrome,  hypertension, tiredness, anxiety, panic attacks, asthma, dysmenorrhea, epilepsy, cold hands and feet, emphysema, and insomnia.  Many of our clients who aware of their dysfunctional breathing patterns and are able to implement effortless breathing report significant reduction in symptoms (Chaitow, Bradley, & Gilbert, 2013; Peper, Mason, Huey, 2017; Peper & Cohen, 2017; Peper, Martinez Aranda, & Moss, 2015).

Breathing is usually overlooked as a first treatment strategy-it is not as glamorous as drugs, surgery or psychotherapy. Teaching breathing takes skill since practitioners needs to be experienced. Namely, they need to be able to demonstrate in action how to breathe effortlessly before teaching it to others.  Although it seems unbelievable, a small change in our breathing pattern can have major physical, mental, and emotional effects as can be experienced in the following practice.

Begin by breathing normally and then exhale only 70% of the inhaled air, and inhale normally and again exhale only 70% of the inhaled air.  With each exhalation exhale on 70% of the inhaled air.  Continue this for 30 seconds. Stop and note how you feel.

Almost every reports that the 30 seconds feels like a minute and experience some of the following symptoms listed in table 1.

Capture

Table 1.  Symptoms experienced after 30-45 seconds of sequentially exhaling 70% percent of the inhales air (Peper & MacHose, 1993).

Even though many therapists have long pointed out that breathing is essential, it is usually the forgotten ingredient. It is now being rediscovered in the age of the COVID-19  as respiratory health may reduce the risk of COVID-19.

Simply having very sick patients lie on their side or stomach can improve gas exchange.  By lying on your side or prone, breathing is easier as the lung can expand more which appears to reduce the utilization of respirators and intubation (Long & Singh, 2020; Farkas, 2020).  This side or prone breathing approach is thousands of years old.

One of the natural and health promoting breathing patterns to promote lung health is to breathe predominantly through the nose. The nose filters, warms, moisturizes and slows the airflow so that airway irritation is reduced. Nasal breathing also increases nitric oxide production that significantly increases oxygen absorption in the body. More importantly for dealing with COVID-19, nitric oxide,  produced and released inside the nasal cavities and the lining of the blood vessels, acts as an anti-viral and is a secondary strategy to protect  against viral infections (Mehta, Ashkar & Mossman, 2012).   During inspiration through the nose, the nitric oxide helps dilate the airways in your lungs and blood vessels (McKeown, 2016).

To increase your health, breathe through your nose, yes, even at night (McKeown, 2020).  As you practice this during the day be sure that the lower ribs and abdomen expand during inhalation and decrease in diameter during exhalation.  It is breathing without effort although many people will report that it initially feels unnatural. Exhale to the count of about 5 or 6 and inhale (allow the air to flow in) to the count of 4 or 5. Mastering nasal breathing takes practice, practice and practice. See the following for more information.

Watch the Youtube presentation by Patrick McKeown author of the Oxygen Advantage, Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health. https://www.youtube.com/watch?v=AiwrtgWQeDc&t=680s

Listen to Terry Gross interviewing James Nestor on “How The ‘Lost Art’ Of Breathing Can Impact Sleep And Resilience” on May 27, 2020 on the NPR radio show, Fresh Air.

https://www.npr.org/sections/health-shots/2020/05/27/862963172/how-the-lost-art-of-breathing-can-impact-sleep-and-resilience

Look at the Peperperspective blogs that focus on breathing in the age of Covid-19.

Read science writer James Nestor’s book, Breath The new science of a lost art, Breath The new science of a lost art.

Breathe Nestor

References

Allen, R. (2017).The health benefits of nose breathing. Nursing in General Practice.

Chaitow, L., Bradley, D., & Gilbert, C. (2013). Recognizing and treating breathing disorders: A multidisciplinary approach, 2nd ed. London: Churchill Livingstone.

Christopher, G. (2019). A Guide to Monitoring Respiration. Biofeedback, 47(1), 6-11.

Farkas, J. (2020). PulmCrit – Awake Proning for COVID-19. May 5, 2020. 

Gibson, J., Loddenkemper, R., Sibille, Y., &Lundback, B. (eds).(2019) European Lung white book. Sheffield, United Kingdom:  European Respiratory Society.

Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work?. Frontiers in psychology5, 756. 

Levin, C.J. & Swoap, S.J. (2019). The impact of deep breathing and alternate nostril breathing on heart rate variability: a human physiology laboratory. Adv Physiol Educ, 43, 270–276.

Long, L. & Singh, S. (2020). COVID-19: Awake Repositioning / Proning. EmDocs

McKeown, P. (2016). Oxygen advantage. New York: William Morrow.

McKeown, P. (2020).  Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health.

Mehta, D. R., Ashkar, A. A., & Mossman, K. L. (2012). The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS one, 7(2), e31688. 

Nestor, James. (2020). Breath The new science of a lost art. New York: Riverhead Books

Peper, E. & Cohen, T. (2017). Inhale to breathe away pelvic floor pain and enjoy intercourse. Biofeedback.45(1), 21–24.

Peper, E., Gilbert, C.D., Harvey, R. & Lin, I-M. (2015). Did you ask about abdominal surgery or injury? A learned disuse risk factor for breathing dysfunction. Biofeedback. 34(4), 173-179. DOI: 10.5298/1081-5937-43.4.06

Peper, E., Lee, S., Harvey, R., & Lin, I-M. (2016). Breathing and math performance: Implication for performance and neurotherapy. NeuroRegulation, 3(4),142–149.

Peper, E. & MacHose, M. (1993).  Symptom prescription:  Induc­ing anxiety by 70% exhalation. Biofeedback and Self-Regulation. 18 (3), 133-139.

Peper, E., Martinez Aranda, P., & Moss, E. (2015). Vulvodynia treated successfully with breathing biofeedback and integrated stress reduction: A case report. Biofeedback. 43(2), 103-109.

Peper, E., Mason, L., Huey, C. (2017).  Healing irritable bowel syndrome with diaphragmatic breathing. Biofeedback. (45-4).

Peper, E. & Tibbetts, V. (1994). Effortless diaphragmatic breathing. Physical Therapy Products. 6(2), 67-71.  Also in:  Electromyography:  Applications in Physical Therapy. Montreal: Thought Technology Ltd


Reduce initial dose of the virus and optimize your immune system

Erik Peper and Richard Harvey

COVID-19 can sometimes overwhelm young and old immune systems and in some cases can result in ‘Severe Acute Respiratory Syndrome’ pneumonia and death (CDC, 2020). The risk is greater for older people, and people with serious heart conditions (e.g., heart failure, coronary artery disease, or cardiomyopathies),  cancers, obesity, Type 2 diabetes, COPD, chronic kidney disease, hypertension, smoking,  immune suppression or other health issues (CDC, 2020a) as well as young people with immunological defects in type I and II interferon production (van der Made, 2020).  As we age the immune system deteriorates  (immunosenescence) that reduces the response of the adaptive immune system that needs to respond to the virus infection (Aw, Silva & Palmer, 2007; Osttan, Monti, Gueresi, et al., 2016).

Severity of disease may depend upon initial dose of the virus

In a brilliant article, How does the coronavirus behave inside a patient? We’ve counted the viral spread across peoples; now we need to count it within people, assistant professor of medicine at Columbia University and cancer physician Siddhartha Mukherjee points out that severity of the disease may be related to the initial dose of the virus.  Namely, if you receive a very small dose (not too many virus particles), they will infect you; however, the body can activate its immune response to cope with the infection.  The low dose exposure act similar to vaccination.  If on the other hand you are exposed to a very high dose then your body is overwhelmed with the infection and is unable to respond effectively.  Think of a forest fire. A small fire can easily be suppressed since there is enough time to upgrade the fire-fighting resources; however, during a fire-storm with multiple fires occurring at the same time, the fire-fighting resources are overwhelmed and there is not enough time to recruit outside fire-fighting resources.

As Mukherjee points out this dose exposure relationship with illness severity has a long history. For example, before vaccinations for childhood illnesses were available, a child who became infected at the playground usually experienced a mild form of the disease.  However, the child’s siblings who were infected at home develop a much more severe form of the disease.

The child infected in the playground most likely received a relatively small dose of the virus over a short time period (viral concentration in the air is low).  On the other hand, the siblings who were infected at home by their infected brother or sister received a high concentration of the virus over an extended period which initially overwhelmed their immune system. Higher virus concentration is more likely during the winter and in well insulated/sealed houses where the air is recirculated without going through HEPA or UV filters to sterilize the air. When there is no fresh air to decrease or remove the virus concentration, the risk of severity of illness may be higher (Heid, 2020).

The risk of becoming sick with COVID-19 can only occur if you are exposed to the coronavirus and the competency of your immune system. This can be expressed in the following equation.Risk ratioThis equation suggests two strategies to reduce risk:  reduce coronavirus load/exposure and strengthen the immune system.

How to reduce the coronavirus load/dose of virus exposure

Assume that everyone is contagious even though they may appear healthy.  Research suggests that people are already contagious before developing symptoms or are asymptomatic carriers who do not get sick and thereby unknowingly spread the virus (Furukawa, Brooks, Sobel, 2020). Dutch researchers have reported that, “The proportion of pre-symptomatic transmission was 48% for Singapore and 62% for Tianjin, China (Ganyani et al, 2020). Thus, the intervention to isolate people who have symptoms of COVID-19 (fever, dry cough, etc.) most likely will miss the asymptomatic carriers who may infect the community without awareness.  Only if you have been tested, do you know if you been exposed or recovered from the virus. To reduce exposure to the virus, avoid the  “Three C’s” — closed spaces with poor ventilation, crowded places and close contactand do the following:

  1. Follow the public health guidelines:
    • Social distance (physical distancing while continuing to offer social support)
    • Wear a mask and gloves to reduce spreading the virus to others.
    • Wash your hands with soap for at least 20 seconds.
    • Avoid touching your face to prevent microorganisms and viruses to enter the body through mucosal surfaces of the nose mouth and eyes.
    • Clean surfaces which could have been touched by other such as door bell, door knobs, packages.
  1. Avoid the person’s slipstream that may contain the droplets in the exhaled air. The purpose of social distancing is to have enough distance between you and another person so that the exhaled air of the other person would not reach you. The distance between people depends upon their activities and the direction of airflow.

In a simulation study, Professor Bert Blocken and his colleagues at KU Leuven and Eindhoven University of Technology reported that the plume of the exhaled air that potentially could contain the virus  droplets could extend much more than 5 feet. It  would depends upon the direction of the wind and whether the person is walking or jogging as show in Figure 1 (Blocken, 2020).

Slipstream

Figure 1. The plume of exhaled droplets that could contain the virus extends behind the person in their slipstream (photo from KU Leuven en TU Eindhoven).

The plume of exhaled droplets in the person’s slipstream may extend more than 15 feet while walking and more than 60 feet while jogging or bicycling.  Thus. social distancing under these conditions is much more than 6 feet and it means avoiding their slipstream and staying much further away from the person. 

  1. Increase fresh air to reduce virus concentration. The CDC recommends ventilation with 6 to 12 room air changes per hour for effective air disinfection (Nardell & Nathavitharana, 2020). By increasing the fresh outside air circulation, you dilute the virus concentration that may be shed by an infected asymptomatic or sick person  (Qian & Zheng, 2018).  Thus, if you are exposed to the virus, you may receive a lower dose and increase the probability that you experience a milder version of the disease. Almost all people who contract COVID-19 are exposed indoors to the virus.  In the contact tracing study of 1245 confirmed cases in China, only a single outbreak of two people occurred in an outdoor environment (Qian  et al, 2020). To increase fresh air (this assumes that outside air is not polluted), explore the following:
    • Open the windows to allow cross ventilation through your house or work setting. One of the major reasons that the flu season spikes in the winter is that people congregate indoors to escape weather extremes. People keep their windows closed to conserve heat and reduce heating bill costs. Lack of fresh air circulation increases the viral density and risk of illness severity (Foster, 2014).
    • Use an exhaust fans to ventilate a building. By continuously replacing the inside “stale” air  with fresh outside air, the concentration of the virus in the air is reduced.
    • Use High-efficiency particulate air (HEPA) air purifiers to filter the air within a room. These devices will filter out particles whose diameter is equal to 0.3 µ m. They will not totally filter out the virus; however, they will reduce it.
    • Avoid buildings with recycled air unless the heating and air conditioning system (HAC) uses HEPA filters.
    • Wear masks to protect other people and your community. The mask will reduce the shedding of the virus to others by people with COVID-19 or those who are asymptomatic carriers. This is superbly illustrated by Prather, Wang, & Schooley (2020) that not masking maximizes exposure, whereas universal masking results in the least exposure. masks without header
  1. Avoid long-term exposure to air pollution. People exposed to high levels of air pollution and fine particulate matter (PM2.5)  are more at risk to develop chronic respiratory conditions and COVID-19 death rates. In the 2003 study of SARS, ecologic analysis conducted among 5 regions in China with 100 or more SARS cases showed that case fatality rate increased with the increment of air pollution index (Cui, Zhang, Froines, et al. , 2003). The higher  the concentration of fine particulate matter (PM2.5), the higher the death rate (Conticini, Frediani, & Caro, 2020).  As researchers, Xiao Wu, Rachel C. Nethery and colleagues (2020) from the Harvard T.H. Chan School of Public Health point out,  “A small increase in long-term exposure to PM2.5 leads to a large increase in COVID-19 death rate, with the magnitude of increase 20 times that observed for PM2.5 and all cause mortality. The study results underscore the importance of continuing to enforce existing air pollution regulations to protect human health both during and after the COVID-19 crisis.
  2. Breathe only through your nose. The nose filters, warms, moisturizes and slows the airflow so that airway irritation is reduced. Nasal breathing increases nitric oxide production that significantly increases oxygen absorption in the body. During inspiration through the nose the nitric oxide helps dilate the airways in your lungs and blood vessels (McKeown, 2016). More importantly for dealing with COVID-19, Nitric Oxide,  produced and released inside the nasal cavities and the lining of the blood vessels, acts as an antiviral and a secondary strategy to protect against viral infections (Mehta, Ashkar & Mossman, 2012).   

How to strengthen your immune system to fight the virus

The immune system is dynamic and many factors as well as individual differences affect its ability to fight the virus.  It is possible that a 40 year-old person may have an immune systems that functions as a 70 year old, while some 70 year-olds have an immune system that function as a 40 year-old. Factors that contribute to immune competence include genetics, aging, previous virus exposure, and lifestyle (Lawton, 2020).

It is estimated that 70-80% mortality caused by Covid-19 occurred in people with comorbidity who are: over 65, male, lower socioeconomic status (SES), non white, overweight/obesity, cardiovascular heart disease, and immunocompromised. Although children comprised only a small percentage of the seriously ill patients, 83% of those children in the intensive care units had comorbidities and 60% were obese. The majority of contributing factors to comorbidities and obesity are the result of economic inequality and life style patterns such as the Western inflammatory diet (Shekerdemian et al, 2020; Zachariah, 2020; Pollan, 2020).  

By taking charge of your lifestyle habits through an integrated approach, you may be able to strengthen your immune system (Alschuler et al, 2020; Lawton, 2020). The following tables, adapted from the published articles by Lawton (2020),  Alschuler et al, (2020) and Jaffe (2020), list factors that support or decrease the immune system.

Factors that decrease immune competence

decrease immune competence rev

Factors that support immune competence

increase immune competence rev1

Phytochemicals and vitamins that support immune competence

immune system vitamins

Conclusion

An ounce of prevention is worth a pound of cure.  Thus, to reduce the risk of covid-19 disease severity, implement strategies to reduce viral dosage exposure and strengthen the immune system.  Many of these factors are within our control. Thus, increase fresh air circulation, reduce stress, decrease foods that tend to increase inflammation (the industrialized western diet that significant contributes to the development of chronic disease), and increase foods, vitamins and nutrients that support immune competence.

These factors have been superbly summarized by the World Health Organization Director General Dr. Tedros Adhanom in his presentation, Practical tips how to keep yourself safe.

REFERENCES

Abhanon, T. (2020 March 26). Practical tips how to keep yourself safe.

Alschuler, L., Weil, A., Horwitz, R. Stamets, P., Chiasso, A.M., Crocker, R., & Maizes, V. (2020 March 26). Integrative considerations during the CPVID-19 pandemic. Explore, 26.

Aranow C. (2011). Vitamin D and the immune system. Journal of investigative medicine : the official publication of the American Federation for Clinical Research59(6), 881–886. 

Aw, D., Silva, A. B., & Palmer, D. B. (2007). Immunosenescence: emerging challenges for an ageing population. Immunology120(4), 435–446.

Blocken, B. (2020-04-08). Cited in, Belgishch onderzoek: fietsen, joggen of wandelen do je best niet achtr elkaar in tijden van corona. DeMorgen. 

Brandhorst, S., Choi, I.Y., Wei, M., Cheng, C.W., Sedrakyan, S., Navarrete, G., Dubeau, L., et al. (2015). A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metabolism, 22(1), 86-99. 

Campbell, J.P. & Turner, J.E. (2018). Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Frontiers in Immunology, 9, 648.  

Casas R, Sacanella E, Estruch R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr Metab Immune Disord Drug Targets. 2014;14(4):245‐254. 

CDC (2020, March 26). Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020. Morbidity and Mortality Weekly Report. CDC. March 26, 2020.

CDC. (2020a, July 17). Evidence used to update the list of underlying medical conditions that increase a person’s risk of severe illness from COVID-19. CDC-?Coronavirus Disease. 

Conticini, D., Frediani, F., & Caro, D. (2020). Can atmospheric pollution be considred a co-factdor in the extremely high level of SARS-CoV-2 lethality in Northern Italy.  Environmental Pollution, available online, 4 April 2020, 114465.

D’Acquisto F. (2017). Affective immunology: where emotions and the immune response converge. Dialogues in clinical neuroscience19(1), 9–19.

Foster, H. (2014 December 1). The reason for the season: why flu strikes in winter. SITN Science in the News.

Furukawa, N.W., Brooks, J.T., & Sobel, J. (2020, July). Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis. [June3, 2020]. https://doi.org/10.3201/eid2607.201595

Ganyani, T., Kremer, C., Chen, D., Torneri, A, Faes, C., Wallinga, J., & Hensm N. (2020).    Estimating the generation interval for COVID-19 based on symptom onset data     doi:https://doi.org/10.1101/2020.03.05.20031815

Glaser, R. & Kiecolt-Glaser, J.K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews of Immunology, 5(3), 243-251. 

Holt-Lunstad,  J., Smith, T.B., Baker, M., Harris, T., & Stephenson, D. (2015).  Loneliness and social isolation as risk factors for mortality: a meta-analytic review.   Perspect Psychol Sci. 10(2), 227-237. doi:10.1177/1745691614568352

Heid, M. (2020-04-09).  The Germ-Cleaning Power of an Open Window. Elemental by Medium. 

Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27(1):19‐35. 

Jaffe, R. (2020). Reduce risk, boost immunity defense and repair abilities, and stay resilient. PERQUE Integrative Health.

Kaplow, S. (2020, April 29). COVID-19 and the Risk from Recirculated Air in Buildings. Green Building Law Update.

Koh, K.B. (2018). Stress, Emotion, and Immunity. In: Stress and Somatic Symptoms. Springer, Cham, 43-54.

Kuo M. (2015). How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Frontiers in psychology6, 1093. 

Lawton, G. (2020). You’re only as young as your immune system. New Scientist, 245(3275), 44-48.

Lee, G. Y., & Han, S. N. (2018). The Role of Vitamin E in Immunity. Nutrients10(11), 1614. 

Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487‐494.

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, Inflammation and Immunity. Nutrients8(3), 167. 

Malaguarnera L. (2019). Influence of Resveratrol on the Immune Response. Nutrients11(5), 946. 

Martineau, A.R., Jolliffe, D.A., Hooper, R.L, Greenberg, L., Aloia, J.F ..(2017). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. British Medical Journal; 356:i6583 | doi: 10.1136/bmj.i6583

McKeown, P. (2020). Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health.

Mehta, D. R., Ashkar, A. A., & Mossman, K. L. (2012). The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS one, 7(2), e31688. 

Mukherjee, S. (2020). How does the coronavirus behave inside a patient? We’ve counted the viral spread across peoples; now we need to count it within people. The New Yorker, April 6, 2020.

Nardell, E.A. & Nathavitharana, R.R. (2020). Airborne Spread of SARS-CoV-2 and a Potential Role for Air Disinfection. JAMA. Published online June 01, 2020. doi:10.1001/jama.2020.7603 

Mukherjee, S., Dudley, J. I., & Das, D. K. (2010). Dose-dependency of resveratrol in providing health benefits. Dose-response : a publication of International Hormesis Society8(4), 478–500. 

Neupane, B., Jerrett, M., Burnett, R.T., Marrie, T., Arain, A., Loeb, M. (2018).  Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med, 181(1), 47‐53.

Ostan, R., Monti, D., Gueresi, P., Bussolotto, M., Franceschi, C., & Baggio, G. (2016). Gender, aging and longevity in humans: An update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clinical Science, 130(19), 1711-1725.

Qian, H., & Zheng, X. (2018). Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. Journal of thoracic disease10(Suppl 19), S2295–S2304. https://doi.org/10.21037/jtd.2018.01.24

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science5, e47. 

Perez de Heredia, F., Gomez-Martinez, S., &Marcos, A. (2012). Chronic and degenerative diseases Obesity, inflammation and the immune system. Proceedings of the Nutrition Society, 71, 332–338.

Pollan, M. (2020). The sickness in our food supply. The New York Review of Books. June 11, 2020 issue. https://www.nybooks.com/articles/2020/06/11/covid-19-sickness-food-supply/

Prasad A. S. (2008). Zinc in human health: effect of zinc on immune cells. Molecular medicine (Cambridge, Mass.)14(5-6), 353–357. 

Prather, K. A., Wang, C.C., * Schooley, R.T. (2020). Reducing transmission of SARS-CoV-2. Science, 10.1126/sciennce.abc6197

Price MA, Butow PN, Bell ML, et al. Helplessness/hopelessness, minimization and optimism predict survival in women with invasive ovarian cancer: a role for targeted support during initial treatment decision-making?. Support Care Cancer. 2016;24(6):2627‐2634. 

Qian, H., Miao, T, Liu, L, Zheng, Z, Luo, D., & Li, Yuguo. (2020). Indoor transmission of SARS-CoV-2. MedRxiv The preprint server for health sciences. https://doi.org/10.1101/2020.04.04.20053058

Reed, R.G. & Raison, C.L. (2016). Stress and the Immune System. In: Esser, C. (eds) Environmental Influences on the Immune System. Springer, Vienna, 97-126.

Sarkar, D., Jung, M. K., & Wang, H. J. (2015). Alcohol and the Immune System. Alcohol Research : Current Reviews37(2), 153–155. 

Segerstrom, S. C. & Miller, G. E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological bulletin130(4), 601–630.

Shekerdemian L.S., Mahmood N.R., Wolfe, K.K., et al (2020). International COVID-19 PICU Collaborative. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units.JAMA Pediatr. Published online May 13, 2020. doi:10.1001/jamapediatrics.2020.1948

Simpson, N., Haack, M., Mullington, J.M. (2017). Sleep and Immune Regulation. In: Chokroverty S. (eds). Sleep Disorders Medicine. Springer, New York, NY, 195-203.

Uchino, B. N., Vaughn, A. A., Carlisle, M., & Birmingham, W. (2012). Social support and immunity. In S. C. Segerstrom (Ed.), Oxford library of psychology. The Oxford handbook of psychoneuroimmunology (p. 214–233). Oxford University Press. 

van der Made, CI,,  Simons A, Schuurs-Hoeijmakers J, et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA. Published online July 24, 2020. doi:10.1001/jama.2020.13719

Witek, L, Tell, J. D., & Mathews, L. (2019). Mindfulness based stress reduction provides psychological benefit and restores immune function of women newly diagnosed with breast cancer: A randomized trial with active control. Brain, behavior, and immunity, 80, 358-373. 

Wu, X., Nethery, R.c., Sabath, B., Braun, D., & Dominici, R. (2020). Exposure to air polution and COVID-19 mortality in the United States. Submitted to New England Journal of Medicine. April 5, 2020. 

Zachariah, P., Johnson, C.L., Halabi, K.C., et al (2020) Columbia Pediatric COVID-19 Management Group. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in New York City, New York. JAMA Pediatr. Published online June 3, 2020. doi:10.1001/jamapediatrics.2020.2430

 


Can changing your breathing pattern reduce coronavirus exposure?

sneeze

This blog is based upon our breathing  research that began in the 1990s, This  research helped identify dysfunctional breathing patterns that could contribute to illness. We developed coaching/teaching strategies with biofeedback to optimize breathing patterns, improve health and performance (Peper and Tibbetts, 1994; Peper, Martinez Aranda and Moss, 2015; Peper, Mason, and Huey, 2017).

For example, people with asthma were taught to reduce their reactivity to cigarette smoke and other airborne irritants (Peper and Tibbitts, 1992Peper and Tibbetts, 2003).  The smoke of cigarettes or vaping spreads out as the person exhales. If the person was infected, the smoke could represent the cloud of viruses that the other people would inhale as is shown in Figure 1.vaping

Figure 1. Vaping by young people in Riga, Latvia (photo by Erik Peper).

To learn how to breathe differently, the participants  first learned effortless slow diaphragmatic breathing. Then were taught that the moment they would become aware of an airborne irritant such as cigarette smoke, they would hold their breath and relax their body and move away from the source of the polluted air while exhaling very slowly through their nose. When the air was clearer they would inhale and continue effortless diaphragmatically breathing (Peper and Tibbetts, 1994).  From this research we propose that people may reduce exposure to the coronavirus by changing their breathing pattern; however, the first step is prevention by following the recommended public health guidelines.

  • Social distancing (physical distancing while continuing to offer social support)
  • Washing your hands with soap for at least 20 seconds
  • Not touching your face
  • Cleaning surfaces which could have been touched by other such as door bell, door knobs, packages.
  • Wear a mask to protect other people and your community. The mask will reduce the shedding of the virus to others by people with COVID-19 or those who are asymptomatic carriers.

Reduce your exposure to the virus when near other people by changing your breathing pattern 

Normally when startled or surprised, we tend to gasp and inhale air rapidly. When someone sneezes, coughs or exhales near you, we often respond with a slight gasp and inhale their droplets. To reduce inhaling their droplets (which may contain the coronavirus virus), implement the following:

  • When a person is getting too close
    • Hold your breath with your mouth closed and relax your shoulders (just pause your breathing) as you move away from the person.
    • Gently exhale through your nose (do not inhale before exhaling)-just exhale how little or much air you have
    • When far enough away, gently inhale through your nose.
    • Remember to relax and feel your shoulders drop when holding your breath.  It will last for only a few seconds as you move away from the person.  Exhale before inhaling through your nose.
  • When a person coughs or sneezes
    • Hold your breath, rotate you head away  from the person and move away from them while exhaling though your nose.
    • If you think the droplets of the sneeze or cough have landed on you or your clothing, go home, disrobe outside your house, and put your clothing into the washing machine. Take a shower and wash yourself with soap.
  • When passing a person ahead of you or who is approaching you
    • Inhale before they are too close and exhale through your nose as you are passing them.
    • After you are more than 6 feet away gently inhale through your nose.
  • When talking to people outside
    • Stand so that the breeze/wind hits both people from the same side so that the exhaled droplets are blown away from both of you (down wind).

These  breathing skills seem so simple; however, in our experience with people with asthma and other symptoms, it took practice, practice, and practice to change their automatic breathing patterns. The new pattern is pause (stop) the breath and then exhale through your nose. Remember, this breathing pattern is not forced and with practice it will occur effortlessly.

The following blogs offer instructions for mastering effortless diaphragmatic breathing.

https://peperperspective.com/2017/06/23/healing-irritable-bowel-syndrome-with-diaphragmatic-breathing/

https://peperperspective.com/2018/10/04/breathing-reduces-acid-reflux-and-dysmenorrhea-discomfort/

https://peperperspective.com/2019/03/24/anxiety-lightheadedness-palpitations-prodromal-migraine-symptoms-breathing-to-the-rescue/

https://peperperspective.com/2017/03/19/enjoy-sex-breathe-away-the-pain/

https://peperperspective.com/2015/02/18/reduce-hot-flashes-and-premenstrual-symptoms-with-breathing/

https://peperperspective.com/2015/09/25/resolving-pelvic-floor-pain-a-case-report/

References

Peper, E., Martinez Aranda, P., & Moss, E. (2015). Vulvodynia treated successfully with breathing biofeedback and integrated stress reduction: A case report. Biofeedback. 43(2), 103-109.

Peper, E., Mason, L., Huey, C. (2017).  Healing irritable bowel syndrome with diaphragmatic breathing. Biofeedback. (45-4). /

Peper, E., and Tibbetts, V. (1992).  Fifteen-Month follow up with asthmatics utilizing EMG/Incentive inspirometer feedback. Bio­feedback and Self-Regulation. 17 (2), 143-151. 

Peper, E. & Tibbetts, V. (1994). Effortless diaphragmatic breathing. Physical Therapy Products. 6(2), 67-71.  Also in:  Electromyography:  Applications in Physical Therapy. Montreal: Thought Technology Ltd. 

Peper, E.  and Tibbitts, V.  (2003). Protocol for the treatment of asthma.  In:  Zheng, Y. (ed).  Clinical Practice of Biofeedback. Beijing:  High Education Press (HEP). 163-176. ISBN 7-04-011420-8

 


Reduce TechStress at Home

Adapted from the upcoming book, Peper, E., Harvey, R., & Faass, (2020). Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

fig 1 extended neck

Numerous people report that working at the computer at home is more tiring than working in the office.  Although there are obvious advantages to working at home, there are also disadvantages (e.g., no space to work, challenging ergonomics, no escape from the family, lack of nonverbal cues used to communicate, less informal sharing at the water cooler, increased multitasking by working and having to take care of the children).

A major challenge is having a comfortable work space in your home.  This may mean finding a place to put the computer, keyboard and screen.  For some it is the kitchen table, desk in the corner of the bedroom, or coffee table while other it is in a totally separate room.

Incorrect ergonomic arrangement and stressed work style often increases neck, shoulder discomfort and aggravates eye strain and tiredness. Regardless how your digital work space is organized, implement the following life and work style suggestions and ergonomics recommendations to promote health.

LIFE AND WORK STYLE SUGGESTIONS

Take many, many, many breaks.  Movement breaks will reduce the covert static tension that builds up as we sit in static positions and work at the computer.

  • Every few minutes take a small break such as stand up and wiggle or role your shoulders. When performing the movements, stop looking at the screen and look around the room or out the window.
  • Every 30 minutes get up walk around for and move your body. Use timers to notify you every 30 minutes to take a break (e.g., cellphone alarms or personal digital assistants such as Hey Google, Siri, or Alexa).

Improve vision.

  • Take vision breaks to reduce eye fatigue.
    • Every few minutes look away from the screen and into the far distance and blink. If at all possible look outside at green plants which relaxes the near vision induced tension.
    • Blink and blink again. When working at the computer we reduce our blinking rate. Thus, blink each time you click on a new link, finishing entering a column of numbers, etc.
    • Close your eyes by letting the eye lids drop down as you also relax your jaw. Imagine a hook on top of your head which is pulling your head upward and at the same time drop your shoulders.
  • Reduce glare and bright backgrounds
    • Arrange your computer screen at 90 degrees to the brightest light source.
    • Have a darker background behind you when participating in video conferencing (e.g., Zoom, Skype, GoToMeeting, WhatsApp, FaceTime). Your face will be visible.

Regenerate

  • When stressed remember to breathe. As you inhale let your stomach expand as you exhale let the air flow out slowly.
  • Stop watching and listening to the negative news (check the news no more than once a day). Watch positive and humorous movies.
  • Get fresh air, go for a walk, and be in the sun
  • Reconnect with friends and share positive experiences.
  • Remind yourself, that this too shall pass.

ERGONOMIC RECOMMENDATIONS: MAKE THE WORLD YOURS

Good ergonomics means adapting the equipment and environment to you and not the other way around. Optimizes the arrangement of the chair, desk, keyboard, mouse, camera, screen and yourself as shown in Figure 1.

Workstation-Setup1

Figure 1. Recommended arrangement for working at the computer.

Arrange the laptop

The laptop is challenging because if your hands are at the right height for data entry on the keyboard, then you must look down to see the screen.  If the screen at the right height, then you have to raise your hands to reach the keyboard. There are two solutions for this challenge.

  1. Use an external keyboard and mouse, then raise the laptop so that the top of the screen is at eye level. Use a laptop stand or a stack of books to raise the lap top.
  2. Use an external monitor for display, then use the laptop as your keyboard.

If these solutions are not possible, take many, many, many breaks to reduce the neck and shoulder stress.

Arrange the computer workstation

  1. Adjust the chair so that your forearms can rest on the table without raising your shoulders. This may mean sitting on a pillow. If the chair is then too high and your legs dangle, create a foot stool on which you can rest your feet.
  2. Adjust the monitor so that the top of the screen is at eye level. If the monitor is too low, raise it by putting some books underneath it.
  3. If possible, alternate standing and sitting while working.

RESOURCES

Book

Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics provides insight in how discomfort, symptoms and media addiction develops and what you can do about it.  It incorporates the role of evolutionary traps, how biofeedback makes the unaware aware, experiential physical and cognitive practices, and ergonomic recommendations to optimize health and productivity. A must book for anyone using digital devices. Peper, E., Harvey, R., & Faass, (2020). Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Ergonomic suggestions for working at the computer and laptop.

https://peperperspective.com/2014/09/30/cartoon-ergonomics-for-working-at-the-computer-and-laptop/

https://peperperspective.com/2014/02/24/optimizing-ergonomics-adapt-the-world-to-you-and-not-the-other-way-around/

11 tips for working at home

https://www.bakkerelkhuizen.com/knowledge-center/11-productivity-tips-for-homeworkers/?utm_campaign=US+-+19+03+20&utm_source=Newsletter&utm_medium=email

How our digital world activates evolutionary response patterns.

https://peperperspective.com/2020/01/17/evolutionary-traps-how-screens-digital-notifications-and-gaming-software-exploits-fundamental-survival-mechanisms/

https://peperperspective.com/2018/02/10/digital-addiction/

How posture affects health

https://peperperspective.com/2019/07/01/dont-slouch-improves-health-with-posture-feedback/

https://peperperspective.com/2019/05/21/relieve-and-prevent-neck-stiffness-and-pain/

https://peperperspective.com/2017/11/28/posture-and-mood-implications-and-applications-to-health-and-therapy/

https://peperperspective.com/2019/01/23/head-position-it-matters/


Coronavirus risk in context: How worried should you be?

The coronavirus which causes coronavirus disease 2019 (COVID-19) appears to be a highly contagious disease. Some older people and those who are immune compromised are more at risk.  The highest risk are for older people who already have cardiovascular, diabetes, respiratory disease, and hypertension. In addition, older men over 65 years are much more at risk; however, many are smokers who have a compromised pulmonary system. Previous meta analysis showed that smoking was consistently associated with higher risk of hospital admissions after influenza infection. Nevertheless, it is reasonable to assume that over time all most all of us will become exposed to the virus, a few will get very sick, and even fewer will die.

The preliminary data suggests that most people who become infected may not even know they are infectious. Make the assumption that everyone could be contagious unless tested for the virus or antibodies to the virus since people appear to be infectious for the first four days before experiencing symptoms.

corona virus infection

The absolute risk that one would die of this disease is low although if you do become very sick it is more dangerous than the normal flu; however, the fear of this disease may be out of proportion compared to other health risks. For detailed analysis and graphic summaries see the updated research reports on the Coronavirus disease (COVID-19) by Our World in Data and Information is beautiful. These reports make data and research on the world’s largest problems understandable and accessible.

It is worthwhile to look at the absolute risk of COVID-19.  To read that more than 332,000 people world wide have died in the last five months is terrifying especially with the increasing death rate in Europe and New York; however, it needs to be understood in context of the size of the population.  The epicenter of this disease was Wuhan and Hubei Provence, China with a total population of about 60 million people.  Each year about 427,200 people die in the Wuhan and Hubei Province (the annual death rate in China is 7.12 deaths per 1000 people). Without this new viral disease, about 71,200 people would have died during the same two month period.  The question that has not been discussed is how much did the total death rate increase.  Would it be possible that some of the people who died would have died of other natural causes such as the flu?

The World Health Organization (WHO) and governments around the world should be lauded for their attempt to reduce the spread of the virus. On March 6, 2020, the United States Congress allocated $8. billion dollars to fight and prevent the spread of COVID-19. 

This funding will only partially prevent the spread of the virus because some people have no choice but to go to work when they are sick–they do not receive paid sick leave! This is true for about 30 percent of the American workers who have no coverage at work or the millions of self-employed workers (e.g. gig/freelance workers, waiters, cashiers, drivers, nannies, house cleaners).

To reduce the risk of the spreading COVID-19, anyone who feels sick or thinks they have been exposed, should receive paid sick leave so that they can stay home and self-isolate. The paid sick leave should be Federally funded and provide basic income for those whose income would be lost if they did not work.  Although it is possible that a few people will cheat and take the paid sick leave when they are well, this is worth the risk to keep the rest of population healthy. To provide possible relief, at the moment the House and Senate are working on a greater than $2 trillion dollar stimulus package. 

Personal and government responses to health risks are not always rational. 

Funding for health and illness prevention is driven by politics. For example, gun violence results in more than 100,000 people being injured each year and more than 36,000 killed—an average of 100 per day. Gun violence is a much more virulent disease than COVID-19 and more than 1.7 million Americans have died from firearms since 1968.

The Federal Government response to this gun violence epidemic has been minimal. For the first time since 1996 did the 2020 federal budget include $25 million funding for the CDC and NIH to research reducing gun-related deaths and injuries.

It is clear that the government response does not always focuses its resources on what would reduce injury and death rates the most.  Look at the difference in the national response to COVID-19 virus that has killed more than 120,000 people in the USA ($8.5 billion for the initial response and then $2 trillion stimulus package) as compared gun violence that kills 36,000 people a year in the USA ($25 million funding to study the causes of gun violence).

Be realistic about the actual risk of COVID-19 without succumbing to fear.

COVID-19 is a pandemic and I expect that 30% to 70% of us will be infected this year.  Hopefully, in the next 18 months an effective vaccine will be developed.  In the mean time, there is no known treatment, thus optimize health and reduce the exposure to the coronavirus.

To make sense of the danger of COVID-19, look at it in context to the flu. Depending upon the severity the  flu, 9,000,000 to 45,000,000 people get sick from flu and between 12,000 to 61,000 die from its complications. as shown below in Figure 1.  

influenza-burden-chart2-960pxFigure 1. The estimated U.S. influenza burden by year (from: https://www.cdc.gov/flu/about/burden/index.html)

This year the CDC estimates that there have been 20,000 to 40,000 deaths in the United States so far this year.  

 


Evolutionary traps: How screens, digital notifications and gaming software exploits fundamental survival mechanisms

Erik Peper and Richard Harvey

If athletes, psychologists, business executives, actors, students, politicians, job seekers and others use mental and actual rehearsal to improve their performances, would repeated watching of violent and aggressive streaming-videos, or playing hours and hours of first-shooter computer games be a form of rehearsal for aggressive behavior?

Arguably, mental and actual rehearsal is positively associated with improving health, such as preparing for an athletic competition or an academic exam and is negatively associated with health when playing aggressive, violent first-person shooter video games, or continuously watching aggressive or violent content on a variety of streaming platforms. Rehearsal–whether physical or in our imagination–impacts our health and performance in school, sports, therapy, politics, business and health.  Choose to rehearse activities that improve health and well-being.

  • Athletes use mental rehearsal to improve sports performance (Peper & Aita, 2017; Schenk & Miltenberger, 2019).
  • Surgeons use mental rehearsal and actual practice to improve performance (Spiotta et al., 2018).
  • Psychologists use cognitive behavioral therapy (CBT) rehearsal techniques to reduce anxiety and depression (Dobson & Dobson, 2018; Yamada et al, 2018; Cook, Mostazir, & Watkins, 2019)
  • Successful business executives rehearse presentations before a staff meeting (Couch & Citrin, 2018).
  • Actors and performers spend hours and days rehearsing their roles so that they portray and act it realistically during the performance .
  • Students take practice exams so that they will perform better on the actual exam.
  • Politicians, lawyers, and many others rehearse and practice being able to answer unexpected questions.
  • Job seekers rehearse elevator pitches so that they transmit in a few words what is important

Mechanisms of rehearsal

Both mental and physical rehearsal strengthens neurochemical connections in the brain so that the rehearsed behaviors become more automated, fluid and unconscious.  There is a saying in neurosciences,  “Neurons that fire together wire together.” –the more you rehearse a task, the more those specific neurological pathways are strengthened, leading to automatic and efficient outcomes.

We now spend hours a day being exposed to digital displays on our phones, computers, gaming consoles and other digital devices, immersing ourselves in content reflecting life promoting, positive behavior and sometimes violent, negative behavior. Children and adults spend much of their free time looking at screens, texting, playing computer games, updating social media sites with moment by moment accounts of sometimes trivial activities, or going down the rabbit hole by following one hyperlinks after another.  As we do this, we are unaware how much time has frittered away without actually doing anything productive. Below are some recent estimates of ‘daily active user’ minutes per day that uses a screen.

  • Facebook about an hour per day
  • Instagram just under an hour per day
  • Texting about 45 minutes per day
  • Internet browsing, about 45 minutes per day
  • Snapchat, about 30 minutes per day
  • Twitter, about 25 minutes per day

Adolescents interact with media for over 40 hours per week, or around 6 hours per day!

In spending much of our time with the screens, we rehearse a variety of physical body postures as well as a variety of cognitive and behavioral states that impact our physical, mental, emotional and social health.  Many researchers have lamented the loss of some social skills that develop during physical face-to-face contact.  The colloquial phrase, Use it or lose it, raises several questions about what is being lost when we spend so much of our waking time interacting with screens instead actually with other people?

It is almost impossible not to be distracted by the digital screen.  The powerful audiovisual formats override our desire to do something different that some of us become enslaved to watching streaming videos, playing computer games or texting. Moreover, the ongoing visual and auditory notifications from our apps interrupts and/or capture our attention. Why is it difficult to turn away from visual or auditory stimuli?  The answer has roots in our survival.

To attend to stimuli is an automatic evolutionary survival response. If we did not attend, we would not survive–Is the slight movement to the far right, just at the edge of our peripheral vision, a predator ready to attack?

tigera

Tiger in Kanha National Park, Madhya Pradesh, India 

Each time a stimulus occurs, we need to check it out to see if it is friend or foe, safety or danger. The response is so automatic that we are unaware that we have reacted until after we have responded. We all have experienced this. When a computer screen or cellphone screen is held by the stranger next to us, we automatically look at their screen and we may even begin to read their emails. Although we know that peering at some else’s screen is not proper, we are still feel compelled to do it!

Similarly, screens displaying computer games and other media can capture or hijack our attention by the rapid scene changes, primarily because the content is programmed so we receive intermittent rewards for our responses.  For example, the sound or visual notifications from our apps, cellphone messages, or social media trigger an impulse to scan the environment for information that may be critical to our survival. Even without receiving notifications, we may anticipate or project that there may be new information on our social media accounts, and sometimes we become disappointed when the interval between notifications is long.  One student talking to another might say: “Don’t worry, they’ll respond; It’s only been 30 seconds.” Anticipating responses from the media can interrupt what we are otherwise doing.  For example, rather than finish our work, we check for updates on social media, even though we probably know that there are no new important messages to which we would have to respond right away.

The mechanisms that help us survive by scanning our environment for predators may  now become an evolutionary trap and is exploited  to capture as many eyeballs as possible to increase market share, advertising revenue, and corporate bottom line.

We usually blame the individual for lack of self-control instead of blaming the designers of the digital apps, games and displays who have exploited this biological survival mechanism.  We expect that children have voluntary control as their brains are developing–but how could they not react to the stimuli that for thousands of generations, helped them to survive. It is similar to asking children to have control and say “No” to fast foods and sweets. The foods that were previously necessary for survival represented by moderate amounts of ‘salt, fat, acid, heat and sweet’ tastes are often found in excess in our modern commercial or packaged ‘fast food nation’ making it likely that people may fall into an evolutionary trap related to what they eat.

Presently, high levels of exposure to violent and aggressive streaming videos and computer games can be harmful as they provide the practice to rehearse violence, killing and aggression mentally. It would be too strong a statement to assert that everyone who plays violent video games will become delinquent, criminal or homicidal in an extreme form of aggression.  According to the American Psychological Association Task Force on Video Game Violence in 2017, it may be asserted that high frequency, long duration, high intensity interactions with violent video games or similar media content is highly associated with angry and aggressive thoughts, desensitization to violence, and decreases in empathy or helping others (Calvert et al., 2017).  Some forms of social media interactions also lead to a form of social isolation,  loneliness (phoneliness) (Christodoulou, G., Majmundar, A., Chou, C-P, & Pentz, M.A., 2020; Kardaras, 2017).   Digital content requires the individual to respond to the digital stimuli, without being aware of the many verbal and nonverbal communication cues (facial expressions, gestures, tone of voice, eye contact, body language, posture, touch, etc) that are part of social communication (Remland, 2016). It is no wonder that more and more adolescents experience anxiety, depression, loneliness, and attention deficit disorders with a constant ‘digital diet’ that some have suggested include not only media, but junk food as well .

The negative impact of watching digital media was prescient by Jerry Mander, one of the leading visionaries of the 20th century, in his 1978 book, Four Arguments for the Elimination of Television, as well as by Joseph C. Pearce, author of books on human development and child development, in his 1993 book, Evolution’s End.

More recently, two superb books detail the harm that the digital revolution has brought, along with recommended strategies for how to use modern technologies wisely and live successfully in an e-world.  We are not saying to avoid the beneficial parts of the digital age.   We are saying to be aware how some material and digital platforms prey upon our evolutionary survival mechanisms.  Unfortunately, most people —especially children– have not evolved skills to counter the negative impacts of some types of media exposure.  It may take parental control and societal policies to mitigate the damage and enhance the benefits of the digital age. We highly recommend the following two books.

Glow Kids by Nicholas Kardaras, PhD describes the impact of excessive texting and computer gaming as well as strategies how to use digital media wisely

Deep Work by Cal Newport, PhD describes the impact of constant interruptions and offers rules for focused success in a distracted world.

book covers

References:

Calvert, S. L., Appelbaum, M., Dodge, K. A., Graham, S., Nagayama Hall, G. C., Hamby, S., Fasig-Caldwell, L. G., Citkowicz, M., Galloway, D. P., & Hedges, L. V. (2017). The American Psychological Association Task Force assessment of violent video games: Science in the service of public interest. American Psychologist, 72(2), 126–143. https://doi.org/10.1037/a0040413

Christodoulou, G., Majmundar, A., Chou, C-P, & Pentz, M.A. (2020). Anhedonia, screen time, and substance use in early adolescents: A longitudinal mediation analysis. Journal of Adolescence, 78, 24-32.

Cook L, Mostazir M, Watkins E, (2019). Reducing Stress and Preventing Depression (RESPOND): Randomized Controlled Trial of Web-Based Rumination-Focused Cognitive Behavioral Therapy for High-Ruminating University Students. J Med Internet Res, 21(5):e11349

Couch, M. A., & Citrin, R. (2018). Retooling leadership development. Strategic HR Review, 17(6), 275-281.

Dobson, D. & Dobson, K.S. (2018). Evidence-Based Practice of Cognitive-Behavioral Therapy, 2nd ed. New York: Guilford Press.

Kardaras, N. (2017).  Glow Kids, New York: St. Martin’s Griffin

Mander, J. (1978).  Four arguments for the Elimination of Television. New York: William Morrow Paperbacks.

Newport, C. (2019). Deep Work. New York: Grand Central Publishing

Pearce, J. C. (1993). Evolution’s End. New York: Harper One

Peper, E. & Aita, J. (2017). Winning the Gold in Weightlifting Using Biofeedback, Imagery and Cognitive Change. Biofeedback, 45(4), 77-82

Remland, M.S. (2016). Nonverbal Communication in Everyday Life, 4th ed.  London: Sage Publications Ltd.

Schenk, M. & Miltenberger, R. (2019). A review of behavioral interventions to enhance sports performance. Behavior Interventions, 33(2), 248-279.

Spiotta, A.M, Buchholz, A.L., Pierce, A. K., Dahlkoetter, J., & Armonda, R. (2018).  The Neurosurgeon as a High-Performance Athlete: Parallels and Lessons Learned from Sports Psychology. World Neurosurgery, 120, e188-e193

Yamada, F., Hiramatsu, Y., Murata, T., Seki, Y., Yokoo, M., Noguchi, R., … & Shimizu, E. (2018). Exploratory study of imagery rescripting without focusing on early traumatic memories for major depressive disorder. Psychology and Psychotherapy: Theory, Research and Practice91(3), 345-362.

 

 


Life has choices

When you woke up this morning, how did you feel? Were you looking forward to the day anticipating with joy what would occur or were you dreading the day as if once again you had to step on the treadmill of life?

photo

Whenever I ask this question of college students in their junior or senior year at an urban university about 20% will answer that they are looking forward to the day. The majority answer, “Well not really”, or even “Oh shit, another day”. For many students the burden of working 40 plus hours a week to pay for rent and tuition, worrying about financial debt, the challenge of commuting, and finding time to do the homework is overwhelming. Focusing on quality of life is not only a challenge for students, but for all of us.

Each day ask yourself, “Am I looking forward to my day and my activities?” If the answer is “No,” begin to explore new options. Ask yourself, “What would I like to do? Start to explore and imagine new options and then begin to plan how to implement them so that you are on the path to where you want to be.

Creating a worthwhile life is an ongoing challenge.  An inspiring essay by Steven James articulates this by exploring factors that contribute to sickness and health during the height of the AIDs epidemic.  He outline rules that contribute to 1) how to get sick, 2) how to get sicker (if you are already sick), and 3) how to stay well (or get better, if you are not so well to begin with).

Steven James’s Totally Subjective, Nonscientific Guide to Illness and Health: Ten-Step Programs

How to Get Sick

·       Don’t pay attention to your body. Eat plenty of junk food, drink too much, take drugs, have lots of unsafe sex with lots of different partners—and, above all, feel guilty about it. If you are overstressed and tired, ignore it and keep pushing yourself.

·       Cultivate the experience of your life as meaningless and of little value.

·       Do the things you don’t like, and avoid doing what you really want. Follow everyone else’s opinions and advice, while seeing yourself as miserable and “stuck.”

·       Be resentful and hypercritical, especially toward yourself.

·       Fill your mind with dreadful pictures, and then obsess over them. Worry most, if not all, of the time.

·       Avoid deep, lasting, intimate relationships.

·       Blame other people for all your problems.

·       Do not express your feelings and views openly and honestly. Other people wouldn’t appreciate it. If at all possible, do not even know what your feelings are.

·       Shun anything that resembles a sense of humor. Life is no laughing matter!

·       Avoid making any changes that would bring you greater satisfaction and joy.

 How to Get Sicker (If You’re Already Sick)

·       Think about all the awful things that could happen to you. Dwell upon negative, fearful images.

·       Be depressed, self-pitying, envious, and angry. Blame everyone and everything for your illness.

·       Read articles, books, and newspapers, watch TV programs, surf the net, and listen to people who reinforce the viewpoint that there is NO HOPE. You are powerless to influence your fate.

·       Cut yourself off from other people. Regard yourself as a pariah. Lock yourself up in your room and contemplate death.

·       Hate yourself for having destroyed your life. Blame yourself mercilessly and incessantly.

·       Go to see lots of different doctors. Run from one to another, spend half your time in waiting rooms, get lots of conflicting opinions and lots of experimental drugs, starting one program after another without sticking to any.

·       Quit your job, stop work on any projects, give up all activities that bring you a sense of purpose and fun. See your life as essentially pointless, and at an end.

·       Complain about your symptoms, and if you associate with anyone, do so exclusively with other people who are unhappy and embittered. Reinforce each other’s feelings of hopelessness.

·       Don’t take care of yourself. What’s the use? Try to get other people to do it for you, and then resent them for not doing a good job.

·       Think how awful life is, and how you might as well be dead. But make sure you are absolutely terrified of death, just to increase the pain.

 

How to Stay Well (Or Get Better, If You’re Not So Well to Begin With)

·       Do things that bring you a sense of fulfillment, joy, and purpose, that validate your worth. See your life as your own creation and strive to make it a positive one.

·       Pay close and loving attention to yourself, tuning in to your needs on all levels. Take care of yourself, nourishing, supporting, and encouraging yourself.

·       Release all negative emotions—resentment, envy, fear, sadness, anger. Express your feelings appropriately; don’t hold onto them. Forgive yourself.

·       Hold positive images and goals in your mind, pictures of what you truly want in your life. When fearful images arise, refocus on images that evoke feelings of peace and joy.

·       Love yourself, and love everyone else. Make loving the purpose and primary expression of your life.

·       Create fun, loving, honest relationships, allowing for the expression and fulfillment of needs for intimacy and security. Try to heal any wounds in past relationships, as with old lovers, and with your mother and father.

·       Make a positive contribution to your community, through some form of work or service that you value and enjoy.

·       Make a commitment to health and well-being, and develop a belief in the possibility of wholeness. Develop your own healing program, drawing on the support and advice of experts without becoming enslaved to them.

·       Accept yourself and everything in your life as an opportunity for growth and learning. Be grateful. When you fuck up, forgive yourself, learn what you can from the experience, and then move on.

·       Keep a sense of humor.

As you go into the New Year, remind yourself that life has choices.

 


Reduce stress, anxiety and negative thoughts with posture, breathing and reframing

This post has been adapted from Peper, E., Harvey, R., & Hamiel, D.  (2019). Transforming thoughts with postural awareness to increase therapeutic and teaching efficacy.  NeuroRegulation, 6(3), 153-169.  doi:10.15540/nr.6.3.1533-1 

When locked into a position, options appear less available. By unlocking our body, we allow our brain to unlock and become open to new options.

Changing positions may dissolve the rigidity associated with a fixed position. When we step away from the conflict, take a walk, look up at the treetops, roof lines and clouds, or do something different, we loosen up and new ideas may occur. We may then be able see the conflict from a different point of view that allows resolution.

When stressed, anxious or depressed, it is challenging to change. The negative feelings, thoughts and worries continue to undermine the practice of reframing the experience more positively. Our recent study found that a simple technique, that integrates posture with breathing and reframing, rapidly reduces anxiety, stress, and negative self-talk (Peper, Harvey, Hamiel, 2019). 

Thoughts and emotions affect posture and posture affects thoughts and emotions. When stressed or worried (e.g., school performance, job security, family conflict, undefined symptoms, or financial insecurity), our bodies respond to the negative thoughts and emotions by slightly collapsing and shifting into a protective position. When we collapse/slouch, we are much more at risk to:

When we are upright and look up, we are more likely to:

Experience how posture affects memory and the feelings (adapted from Alan Alda, 2018)

Stand up and do the following:

  1. Think of a memory/event when you felt defeated, hurt or powerless and put your body in the posture that you associate with this feeling. Make it as real as possible . Stay with the feeling and associated body posture for 30 seconds. Let go of the memory  and posture. Observe what you experienced.
  2. Think of a memory/event when you felt empowered, positive and happy put your body in the posture that you associate with those feelings. Make it as real as possible. Stay with the feeling and associated body posture for 30 seconds. Let go of the memory and posture. Observe what you experienced.
  3. Adapt the defeated posture and now recall the positive empowering memory while staying in the defeated posture. Observe what you experience.
  4. Adapt the empowering posture and now recall the defeated hopeless memory while staying in the empowered posture. Observe what you experience.

Almost all people report that when they adapt the body posture congruent with the emotion that it was much easier to access the memory and feel the emotion. On the other hand when they adapt the body posture that was the opposite to the emotions, then it was almost impossible to experience the emotions. For many people, when they adapted the empowering posture, they could not access the defeated hopeless memory. If they did access that memory, they were more likely be an observer and not be involved or emotionally captured by the negative memory.

Comparison of Posture with breathing and reframing to Reframing 

The study investigated whether  changing internal dialogue (reframing)  or combining posture change and breathing with changing internal dialogue would reduce stress and negative self-talk more effectively.

The participants were 145 college students (90 women and 55 men) average age 25.0 who participated as part of a curricular practice in four different classes.

After the students completed an anonymous informational questionnaire (history of depression, anxiety, blanking out on exams, worrying, slouching), the classes were divided into two groups. They were then asked to do the following:

  • Think of a stressful conflict or problem and make it as real as possible for one minute. Then let go of the stressful memory and  do one of the two following practices.
    • Practice A: Reframe the experience positively for 20 seconds.
    • Practice B: Sit upright, look up, take a breath and reframe the experience positively for 20 seconds.
  • After doing practice A or practice B,  rate the extent to which your negative thoughts and anxiety/tension were reduced, from 0 (not at all) to 10 (totally).
  • Now repeat this exercise except switch and do the other practice.  (Namely, if you did A now you do B; if you did B now you do A).

RESULTS

Overwhelmingly students reported that sitting erect, breathing and reframing positively was much more effective than only reframing as shown in Figure 1 and 2.figure 1

Figure 1. Percentage of students rating posture, breath and reframing practice (PBRP) as more effective than reframing practice (RP) in reducing negative thoughts, anxiety and stress.slides Figure 2. Self-rating of reduction of negative thoughts and anxiety/tension

Stop reading. Do the practice yourself. It is only through experience that you know whether posture with breathing and reframing is a more beneficial than simply reframing the language.

Implications for education, counseling, psychotherapy. 

Our findings have implications for education, counseling and psychotherapy because students and clients usually sit in a slouched position in classrooms and therapeutic settings. By shifting the body position to an erect upright position, taking a breath and then reframing, people are much more successful in reducing their negative thoughts and anxiety/stress. They report feeling much more optimistic and better able to cope with felt stress as shown by representative comments in table 1.

Reframing Posture, breath and reframing
After changing my internal language, I still strongly felt the same thoughts. I instantly felt better about my situation after adjusting my posture.
I felt a slight boost in positivity and optimism. The negative feelings (anxiety) from the negative thoughts also diminished slightly. The effects were much stronger and it was not isolated mentally. I felt more relief in my body as well.
Even after changing my language, I still felt more anxious. Before changing my posture and breathing, I felt tense and worried. After I felt more relaxed.
I began to lift my mood up; however, it didn’t really improve my mood.  I still felt a bit bad afterwards and the thoughts still stayed. I began to look from the floor and up towards the board. I felt more open, understanding and loving. I did not allow myself to get let down.
During the practice, it helped calm me down a bit, but it wasn’t enough to make me feel satisfied or content, it felt temporary. My body felt relaxed overall, which then made me feel a lot better about the situation.
Difficult time changing language. My posture and breathing helped, making it easier to change my language.
I felt anger and stayed in my position. My body stayed tensed and I kept thinking about the situation. I felt anger but once I sat up straight and thought about breathing, my body felt relaxed.
Felt like a tug of war with my thoughts. I was able to think more positively but it took a lot more brain power to do so. Relaxed, extended spine, clarity, blank state of mind.

Table 1. Some representative comments of practicing reframing or posture, breath and reframing.

The results of our study in the classroom setting are not surprising.  Many us know to take three breaths before answering questions, pause and reflect before responding, take time to cool down before replying in anger, or wait till the next day before you hit return on your impulsive email response.

Currently, counseling, psychotherapy, psychiatry and education tend not to incorporate body posture as a potential therapeutic or educational intervention for teaching participants to control their mood or reduce feelings of powerlessness.  Instead, clients and students often sit slightly collapsed in a chair during therapy  or in class.  On the other hand, if individuals  were encouraged to adopt an upright posture especially in the face of stressful circumstances it would help them maintain their self-esteem, reduce negative mood, and use fewer sadness words as compared to the individual in a slumped and seated posture (Nair, Sagar, Sollers, Consedine, & Broadbent, 2015).

THE VALUE OF SELF-EXPERIENCE

What makes this study valuable is that participants compare for themselves the effects of the two different interventions techniques to reduce anxiety, stress and negative thoughts. Thus, the participants have an opportunity to discover which strategy is more effective instead of being told what to do.  The demonstration is even more impressive when  done in groups because nearly all participants will report that changing posture with breathing and reframing is more beneficial.

This simple and quick technique can be integrated in counseling and psychotherapy by teaching clients this behavioral technique to  reduce stress. In Cognitive Behavioral Therapy (CBT), sitting upright can help the individual replace a thought with a more reasonable one. In third wave CBT, it can help bypass the negative content of the original language and create a metacognitive change, such as, “I will not let this thought control me.”   

It can also help in Acceptance and Commitment Therapy (ACT) since changing one’s body posture may facilitate the process of “acceptance” (Hayes, Pistorello, & Levin, 2012). Adopting an upright sitting position and taking a breath is like saying “I am here, I am present, I am not escaping or avoiding.” This change in body position represents movement from inside to outside, movement from accepting the unpleasant emotion related to the negative thoughts toward a “commitment” to moving ahead, contrary to the automatic tendency to follow the negative thought. The positive reframing during body position or posture change is not an attempt to color reality in pretty colors, but rather a change of awareness, perspective, and focus that helps the individual identify and see some new options for moving ahead toward commitment according to one’s values. This intentional change in direction is central in ACT and also in positive psychology (Stichter, 2018).

CONCLUSION AND RECOMMENDATIONS

We suggest that therapists, educators, clients and students get up out of their chairs and incorporate body movements when they feels overwhelmed and stuck. Finally,  this study points out that mind and body are affected by each other. It provides another example of the psychophysiological principle enunciated by Elmer Green (1999, p 368):

“Every change in the physiological state is accompanied by an appropriate change in the mental-emotional state, conscious or unconscious; and conversely, every change in the mental-emotional state, conscious or unconscious is accompanied by an appropriate change in the physiological state.”

The findings of this study echo the ancient spiritual wisdom that is is central to the teaching of  the Zen Master, Thich Nhat Hanh.  He recommends that his students recite the following at any time:

Breathing in I calm my body,
Breathing out I smile,
Dwelling in the present moment,
I know it is a wonderful moment.

References

Alda, A. (2018). If I Understood You, Would I have This Look on My Face?: My Adventures in the Art and Science of Relating and Communicating. New York: Random House Trade Paperbacks.

Cuddy, A. (2012). Your body language shapes who you are. Technology, Entertainment, and Design (TED) Talk, available at: www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are

Green, E. (1999). Beyond psychophysics, Subtle Energies & Energy Medicine, 10(4), page 368.

Hayes, S. C., Pistorello, J., & Levin, M.E. (2012). Acceptance and Commitment Therapy as a unified model of behavior change. The Counseling Psychologist 40(7), 976-1002.

Michalak, J., Mischnat, J., & Teismann, T. (2014). Sitting posture makes a difference-embodiment effects on depressive memory bias. Clinical Psychology and Psychotherapy, 21(6),

Nair, S., Sagar, M., Sollers, J. 3rd, Consedine, N., & Broadbent, E. (2015). Do slumped and upright postures affect stress responses? A randomized trial. Health Psychology, 34(6), 632-641. 

Peper, E., Booiman, A., Lin, I.M., & Harvey, R. (2016). Increase strength and mood with posture. Biofeedback. 44(2), 66–72.

Peper, E., Harvey, R., & Hamiel, D. (2019) Transforming thoughts with postural awareness to increase therapeutic and teaching efficacy.  NeuroRegulation, 6(3), 153-169.

Peper, E., Harvey, R., Mason, L., & Lin, I-M. (2018). Do better in math: How your body posture may change stereotype threat response. NeuroRegulation, 5(2), 67-74.

Peper, E. & Lin, I-M. (2012). Increase or decrease depression: How body postures influence your energy level. Biofeedback, 40(3), 126–130.

Peper, E., Lin, I-M., Harvey, R., & Perez, J. (2017). How posture affects memory recall and mood. Biofeedback, 45(2), 36-41.

Risking, J.H. & Gotay, C.C. (1982). Physical posture: Could it have regulatory or feedback effects on motivation and emotion? Motivation and Emotion, 6(3), 273-298.

Stichter, M. P. (2019). Positive psychology and virtue: Values in action. The Journal of Positive Psychology, 14(1).

Tsai, H. Y., Peper, E., & Lin, I. M. (2016). EEG patterns under positive/negative body postures and emotion recall tasks. NeuroRegulation, 3(1), 23–27.

Westfeld, G.E. & Beresford, J.J. (1982). Erectness of posture as an indicator of dominance or success in humans. Motivation and Emotion, 6(2), 113-131.