Get Well & Stay Well: Technology’s effect on our mind and body with Wayne Jonas, MD and Erik Peper, PhD

Enjoy the conversations, Get Well & Stay Well, with Wayne Jonas, MD, Former Director NIH Office of Alternative Medicine, and Erik Peper, PhD of San Francisco State University (SFSU) recorded November 30, 2021. They discuss technology’s effect on our mind and body and holistic approaches to managing stress and pain from chronic illness. Have patience when you watch the video–it takes 5 seconds for the program to begin. Click on the link to watch: https://fb.watch/9Cbkw9GZw8/

For more information, see the following blogs:


Healing from paralysis-Music (toning) to activate health

Madhu Anziani and Erik Peper

In April 2009, Madhu Anziani, just one month prior to graduation from San Francisco State University with a degree in Jazz/World music performance, fell two stories and broke C5 and C7 vertebras.  He became a quadriplegic (tretraplegia) and could not breathe, talk, move his arms and legs and was incontinent.  He also could not remember anything about the accident because of retrograde amnesia.  Even though he was paralyzed and the medical staff suggested that he focussed on how to live well as a quadriplegic, he transcended his paralysis and the prognosis and is now a well-known vocal looping arts and ceremonial song leader/composer.

His recovery against all odds provides hope that growth and healing is possible when the mind and spirit focus on possibilities and not on limitations.  Alongside physical thereapy he utilized energy healing and toning/sound vibrations to recover mobility.  Toning, the vocalization of an elonggated monotonous vowel sound susteained for a number of minutes tends to vibrate specific areas in the body where the chakras are located (Crowe & Scovel, 1996; Goldman, 2017). Toning compared to mindfulness meditation reduces intrusive thoughts and mind wandering. It also increases body vibration sensations and heart rate variability much more than mindfulness practice (Peper et al, 2019). The body vibrations induced by toning and music could be one of the mechanisms by which recovery can occur at an accelerated rate as it allows the person’s passive awareness and sustained attention to feel the paralyzed body and yet be relaxed in the present without judgement.   

Watch Madhu’s inspirational presentation as part of the Holistic Health Lecture Series by the Institute for Holistic Health Studies, San Francisco State University. In this presentation, he describes the process of recovery and guides the viewer through toning practices to evoke quieting of mind, bliss within the heart, and a healing state of being.

For an additional discussion and guided practice in toning, see the blog, Toning quiets the mind and increases HRV more quickly than mindfulness practice.

Madu Anziani is a sound healer who endured being a tetraplegic (paralysis affecting all four
limbs) and used sound and energy healing to recover mobility. He is a SFSU graduate and most
well-known as a vocal looping artist and ceremonial song leader/composer.

http://www.firstwasthesound.com

http://madhu.bandcamp.co

REFERENCES:

Crowe, B.J. & Scovel, M. (1996). An Overview of Sound Healing Practices: Implications for the Profession of Music Therapy, Music Therapy Perspectives, 14(1), 21-29.

Goldman, J. (2017). The 7 Secrets of Sound Healing. Carlsbad, CA: Hay House Inc.

Peper, E., Pollack, W., Harvey, R., Yoshino, A., Daubenmier, J. & Anziani, M. (2019). Which quiets the mind more quickly and increases HRV: Toning or mindfulness? NeuroRegulation, 6(3), 128-133.


The Power of Story: Reflections

Julie Lanoie, MA, RN, hospice and palliative care nurse and consultant*

This guest blog’s video by Julie Lanoie reflects on the use of stories while caring for her grandfather during the last years of his life. It is a thoughtful, deeply touching and powerful presentation that would benefit everyone who is concerned with death and dying. As Julie states, people reveal their values, their fears, their regrets, their proudest moments, their greatest loves, and so much more through their stories. 

As listeners and witnesses, we can help facilitate the use of story as a healing tool. Through the stories of one family, this presentation, originally designed for hospice volunteers for the Home Care, Hospice, and Palliative Care Alliance of New Hampshire, illustrates the power of story to support people living with dementia and those who love and care for them, the power of story to contextualize our experience of loss and promote healthy grieving, and the role of story in preserving intergenerational relationships. So…What’s your story?

*Contact information: julieannalano@gmail.com


Addicted to your phone?  How to separate from your phone for a healthy lifestyle[1]

Erik Peper, PhD[2] and Monica Almendras

Our evolutionary traps with technology

Maintaining and optimizing health at the computer means re-envisioning our relationship with technology—and reclaiming health, happiness, and sanity in a plugged-in world.  We have the ability to control everything from our mobile phones without needing to get up from our seat. Work, social life and online learning all involve the mobile phone or some type of smart devices.

A convenient little device that is supposed to simplify our lives has actually trapped us into a vicious cycle of relying on it for every single thing we must do.  We spend most of our day being exposed to digital displays on our smartphones, computers, gaming consoles, and other digital devices, immersing ourselves in the content we are viewing. From work related emails or tasks, to spending our free time looking at the screen for texting, playing games, and updating social media sites on a play-by-play of what we are eating, wearing, and doing. We click on one hyperlink after the other and create a vicious cycle trapped for hours until we realize we need to move. We are unaware how much time has frittered away without actually doing anything productive and then, we realize we have wasted another day. Below are some recent estimates of ‘daily active user’ minutes per day that uses a screen.

  • Facebook about an hour per day
  • Instagram just under an hour per day
  • Texting about 45 minutes per day
  • Internet browsing, about 45 minutes per day
  • Snapchat, about 30 minutes per day
  • Twitter, about 25 minutes per day

Adolescents and college students interact with media for over 40 hours per week, or around 6 hours per day. That is a lot of hours spent on staring at the screen, which it is almost impossible not to be distracted by the digital screen. In time, we rehearse a variety of physical body postures as well as a variety of cognitive and behavioral states that impact our physical, mental, emotional, and social health. The powerful audiovisual formats override our desires to do something different, that some of us become enslaved to streaming videos, playing virtual games, or texting. We then tell ourselves that the task that needs to be done, will be finished later. That later becomes never by the end of the day, since the ongoing visual and auditory notifications from our apps interrupt and/or capture our attention. This difficulty to turn away from visual or auditory stimuli roots in our survival instincts.

Each time visual or auditory stimuli occur, we automatically check it out and see if it is a friend or foe, safety or danger. It is such an automatic response that we are unaware are reacting. The good news is that we all have experienced this compelling effect. Even when we are waiting for a response and the notifications has not arrived, we may anticipate or project that there may be new information on our social media accounts, and sometimes we become disappointed when the interval between notification is long. As one student said, “Don’t worry, they’ll respond. It’s only been 30 seconds”. Anticipating responses from the media can interrupt what we are otherwise doing. Rather than finishing our work or task, we continuously check for updates on social media, even though we probably know that there are no new important messages to which we would have to respond right away.

Unfortunately, some forms of social media interactions also lead to a form of social isolation, loneliness–sometimes called phoneliness (Christodoulou, G., Majmundar, A., Chou, C-P, & Pentz, M.A., 2020Kardaras, 2017). Digital content requires the individual to respond to the digital stimuli, without being aware of the many verbal and nonverbal communication cues (facial expressions, gestures, tone of voice, eye contact, body language, posture, touch, etc.) that are part of social communication (Remland, 2016). It is no wonder that more and more adolescents experience anxiety, depression, loneliness, and attention deficit disorders with a constant ‘digital diet’ that some have suggested that include not only media, but junk food as well.

In my class survey of 99 college students, 85% reported experiencing anxiety, 48% neck and should tension, and 41% abdominal discomfort.

We are not saying to avoid the beneficial parts of the digital age. Instead, it should be used in moderation and to be aware of how some material and digital platforms prey upon our evolutionary survival mechanisms. Unfortunately, most people -especially children- have not evolved skills to counter the negative impacts of some types of media exposure. Parental control and societal policies may be needed to mitigate the damage and enhance the benefits of the digital age.

Zoom Fatigue- How to reduce it and configure your brain for better learning

Zoom became the preferred platform for academic teaching and learning for synchronous education during the pandemic. Thus, students and faculty have been sitting and looking at the screen for hours end. While looking at the screen, the viewers were often distracted by events in their environment, notifications from their mobile phones, social media triggers, and emails; which promoted multitasking (Solis, 2019). These digital distractions cause people to respond to twice as many devices with half of our attention- a process labeled semi-tasking’ -meaning getting twice as much done and half as well.

We now check our phones an average of 96 times a day – that is once every 10 minutes and an increase of 20% as compared to two years ago (Asurion Research, 2019). Those who do media multitasking such as texting while doing a task perform significantly worse on memory tasks than those who are not multitasking (Madore et al., 2020).  Multitasking is negatively correlated with school performance (Giunchiglia et al, 2018). The best way to reduce multitasking is to turn off all notifications (e.g., email, texts, and social media) and let people know that you will look at the notifications and then respond in a predetermined time, so that you will not be interrupted while working or studying.

When students from San Francisco State University in the United States chose to implement a behavior change to monitor mobile phone and media use and reduce the addictive behavior during a five-week self-healing project, many reported a significant improvement of health and performance. For example one student reported that when she reduced her mobile phone use, her stress level equally decreased as shown in Fig 1 (Peper et al, 2021).

Figure 1. Example of student changing mobile phone use and corresponding decrease in subjective stress level. Reproduced by permission from Peper et al. (2021).

During this class project, many students observed that the continuous responding to notifications and social media affected their health and productivity. As one student reported,

The discovery of the time I wasted giving into distractions was increasing my anxiety, increasing my depression and making me feel completely inadequate. In the five-week period, I cut my cell phone usage by over half, from 32.5 hours to exactly 15 hours and used some of the time to do an early morning run in the park. Rediscovering this time makes me feel like my possibilities are endless. I can go to work full time, take online night courses reaching towards my goal of a higher degree, plus complete all my homework, take care of the house and chores, cook all my meals, and add reading a book for fun! –22-year-old College Student

Numerous students reported that it was much easier to be distracted and multitask, check social media accounts or respond to emails and texts than during face-to-face classroom sessions as illustrated by two student comments from San Francisco State University.

“Now that we are forced to stay at home, it’s hard to find time by myself, for myself, time to study, and or time to get away. It’s easy to get distracted and go a bit stir-crazy.”

“I find that online learning is more difficult for me because it’s harder for me to stay concentrated all day just looking at the screen.” 

Students often reported that they had more difficulty remembering the material presented during synchronous presentations. Most likely, the passivity while watching Zoom presentations affected the encoding and consolidation of new material into retrievable long-term memory. The presented material was rapidly forgotten when the next screen image or advertisement appeared and competed with the course instructor for the student’s attention. We hypothesize that the many hours of watching TV and streaming videos have conditioned people to sit and take in information passively, while discouraging them to respond or initiate action (Mander, 1978Mărchidan, 2019).

To reduce the deleterious impact of media use, China has placed time limits on cellphone use, gaming, and social media use for children. On February 2021 Chinese children were banned from taking their mobile phones into school, on August 2021 Children under 18 were banned from playing video games during the week and their play was restricted to just one hour on Fridays, weekends and holidays, and beginning on September 20, 2021 children under 14 who have been authenticated using their real name can access Douyin, the Chinese version of Tik Tok, for maximum of 40 minutes a day between the hours of 6:00 and 22:00.

Ways to avoid Zoom

Say goodnight to your phone

It is common for people to use their mobile phone before going to bed, and then end up having difficult falling asleep. The screen emits blue light that sends a signal to your brain that says it is daytime instead of night. This causes your body to suppress the production of the melatonin hormone, which tells your body that it is time to sleep. Reading or watching content also contributes, since it stimulates your mind and emotions and thereby promote wakefulness (Bravo, 2020). Implement sleep hygiene and stop using your phone or watching screens 30-minutes before going to bed for a better night’s sleep.

Maintaining a healthy vision

We increase near visual stress and the risk of developing myopia when we predominantly look at nearby surfaces. We do not realize that eyes muscles can only relax when looking at the far distance. For young children, the constant near vision remodels the shape of eye and the child will likely develop near sightedness. The solutions are remarkably simple. Respect your evolutionary background and allow your eyes to spontaneously alternate between looking at near and far objects while being upright (Schneider, 2016Peper, 2021Peper, Harvey & Faass, 2020).

Interrupt sitting disease

We sit for the majority of the day while looking at screens that is a significant risk factor for diabetes, cardiovascular disease, depression and anxiety (Matthews et al., 2012; Smith et al., 2020). Interrupt sitting by getting up every 30 minutes and do a few stretches. You will tend to feel less sleepy, less discomfort and more productive. As one of our participants reported that when he got up, moved and exercised every 30 minutes at the end of the day he felt less tired.  As he stated, “There is life after five”, which meant he had energy to do other activities after working at the computer the whole day. While working time flies and it is challenging to get up every 30 minutes.  Thus, install a free app on your computer that reminds you to get up and move such as StretchBreak (www.stretchbreak.com).

Use slouching as a cue to change

Posture affects thoughts and emotions as well as, vice versa. When stressed or worried (e.g., school performance, job security, family conflict, undefined symptoms, or financial insecurity), our bodies tend to respond by slightly collapsing and shifting into a protective position. When we collapse/slouch, we are more at risk to:

When stressed, anxious or depressed, it is challenging to change. The negative feelings, thoughts and worries continue to undermine the practice of reframing the experience more positively. Our recent study found that a simple technique, that integrates posture with breathing and reframing, rapidly reduces anxiety, stress, and negative self-talk (Peper, Harvey, Hamiel, 2019). When you are captured by helpless defeated thoughts and slouch, use the thought or posture as the trigger to take change.  The moment you are aware of the thoughts or slouched posture, sit up straight, look up, take a slow large diaphragmatic breath and only then think about reframing the problem positively (Peper, Harvey, Hamiel, 2019).

When we are upright and look up, we are more likely to:

The challenge is that we are usually unaware we have begun to slouch. A very useful solution is to use a posture feedback device to remind us, such as the UpRight Go (https://www.uprightpose.com/). This simple device and app signals you when you slouch. The device attaches to your neck and connects with blue tooth to your cellphone.  After calibrating, it provides vibrational feedback on your neck each time you slouch. When participants use the vibration feedback to become aware of what is going on and interrupt their slouch by stretching and sitting up, they report a significant decrease in symptoms and an increase in productivity. As one student reported: “Having immediate feedback on my posture helped me to be more aware of my body and helped me to link my posture to my emotions. Before using the tracker, doing this was very difficult for me. It not only helped my posture but my awareness of my mental state as well.”


[1] Adapted from the book by Erik Peper, Richard Harvey and Nancy Faass, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, North Atlantic Press.  https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/ 

[2] Correspondence should be addressed to:

Erik Peper, Ph.D., Institute for Holistic Healing Studies/Department of Recreation, Parks, Tourism and Holistic Health, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132   COVID-19 mailing address:  2236 Derby Street, Berkeley, CA 94705   Email: epeper@sfsu.edu  web: www.biofeedbackhealth.org  blog: www.peperperspective.com


Rest Rusts: Increase dynamic movement to improve health

In hunting and gathering cultures, alternating movement patterns was part of living and essential for health. This shift from dynamic movement to static or awkward positions is illustrated in Figure 1.  

Figure 1. The shift from dynamic movement to immobility and near vision as illustrated by the Hadzabe men in Tanzania returning from a hunt to our modern immobilized work and pleasure positions (Reproduced by permission from Peper, Harvey & Faass, 2020).

Dynamic movement promotes blood and lymph circulation and reduces static pressures.  At present times our work and leisure activities increase  immobility and static positions as we predominantly have shifted to a sitting immobilized position. This significantly increases musculoskeletal discomfort, cardiovascular disease, diabetes etc. The importance of movement as a factor to enhance health is illustrated in the recent findings of 2110 middle aged participants who were followed up for ten years.  Those who took approximately 7000 steps per day or more experienced significantly lower mortality rates compared with participants taking fewer than 7000 steps per day (Paluch et al., 2021). Just having the head forward while looking at the cellphone significantly increases the forces on the muscles holding the head up as illustrated in Figure 2.

Figure 2. The head-forward position puts as much as sixty pounds of pressure on the neck muscles and spine (reproduced by permission from Dr. Kenneth Hansaraj, 2014).

For background and recommendations on what how to reduce static positions, look at our book, TechStress-How technology is hijacking our lives, strategies for coping and pragmatic ergonomics. and the superb article, Static postures are harmful – dynamic postures at work are key to musculoskeletal health, published by the European Agency for Safety and Health at Work (EU-OSHA, Sept 16, 2021) and reproduced below.

Static postures are harmful – dynamic postures at work are key to musculoskeletal health

Our bodies are built for movement – it’s a central part of maintaining a healthy musculoskeletal system and the less we move, the more chance we have of developing health issues including musculoskeletal disorders (MSDs), type 2 diabetes, cardiovascular disease, cancer and more. However, the negative effects of sedentary work can be mitigated by paying attention to the postures we adopt when we work.

Whether workers are standing or seated while working, maintaining a good ergonomic posture is essential when it comes to preventing MSDs. Poor or awkward postures put unnecessary strain on the musculoskeletal system and, over time, can cause the deterioration of muscle fibres and joints.

Poor or awkward postures include those which involve parts of the body not being in their natural position. More muscular effort is needed to maintain unnatural postures, which increases the energy used by the body and can cause fatigue, discomfort and pain. Unnatural postures also put strain on tendons, ligaments and nerves, which increases the risk of injury. For example, the risk of neck pain increases when the neck is rotated more than 45 degrees for more than 25% of the working day.

These postures, including slouching, rotation of the forearms, or prolonged periods of sitting or standing in the same spot, can cause pain in the lower back and upper limbs. The risk increases when combined with repetitive work, static muscle load, or the need to apply force or reach. And even natural or good postures maintained for any length of time become uncomfortable and eventually painful. Everyone has experienced stiffness after being in the same position for any length of time.

What do we mean by ‘good posture’?

For workers, especially those in sedentary jobs such as office work, factory work or driving, it is important to recognise and adopt good postures. A good posture should be comfortable and allow the joints to be naturally aligned. The segments of our body can be divided into three cross-sectional anatomical planes: the sagittal plane, which concerns bending forwards and backwards; the frontal plane, which concerns bending sideways; and finally the transverse plane, which refers to rotation or twisting of the body parts. A good posture is one that ensures that all three of these planes are set at neutral positions as much as possible, in that the worker is not leaning backwards, forwards or to any particular side, and their limbs and torso are not rotated or twisted. Adopting neutral postures will help to lessen the strain on the worker’s muscles, tendons and skeletal system, and reduces the risk of them causing or aggravating an MSD.

In practice, workers can consider the following checklist to ensure that they’re standing or sitting in a neutral position:

  • Keep the neck vertical and the back in an upright position.
  • Ensure the elbows are below the chest and avoid having to reach excessively.
  • Keep the shoulders relaxed and use back and arm rests where possible and ensure that they are adjusted to the size and shape of the worker.
  • Avoid rotating the forearms or excessively moving the wrists.
  • Ensure that any work tools can be held comfortably, and that clothing doesn’t restrain or prevent movement.
  • Allow room to comfortably move the legs and feet and avoid frequent kneeling or squatting.
  • Ensure that long periods of standing or sitting in the same posture can be broken up.

Employers can assist workers in adopting good postures by communicating checklists such as this one, and by promoting physical activity where possible, encouraging the fair rotation of tasks between employees to avoid them consistently making repetitive movements, and ensuring that workers have the capacity to take regular breaks.

Why our next posture is the best posture

However, maintaining a good posture at all times is not enough to reduce the risk of MSDs, and can even be harmful. Static postures, even if ergonomic, are still a risk factor if over-used. Our body requires movement and variety, which is why the best approach is to use a variety of ergonomic postures in rotation, breaking up long periods of static working with stretching, exercise, and movement. This is known as adopting dynamic positions’.

It is important not only for workers who spend much of their day seated, but also for workers who primarily stand – such as factory workers in assembly lines. In both cases, sitting and standing are not opposites. The opposite of both is movement. Changing postures between sitting and standing is not sufficient for any worker – the working environment must still offer ways of varying their postures and incorporating movement into their daily working routines. What’s more, if standing work cannot be avoided, workers do not need lots of space in order to adopt dynamic positions in a healthy way. Blood flow propulsion mechanisms can still work correctly even if the worker is only moving around in one square metre. However it is still the case that they should have a break after 30 minutes of standing.

Work should therefore not only facilitate good postures, but ensure that good, ergonomic postures are also dynamic. Switching between sitting, standing and moving while ensuring that the musculoskeletal frame is not under any unnecessary tension can help sedentary workers avoid the onset of MSDs and other health problems. For more information visit the priority area on sedentary work.

References

EU-OSHA. (September 16, 2021). Static postures are harmful – dynamic postures at work are key to musculoskeletal health. https://healthy-workplaces.eu/en/media-centre/news/static-postures-are-harmful-dynamic-postures-work-are-key-musculoskeletal-health?

Hansraj, K. K. (2014).  Assessment of Stresses in the Cervical Spine Caused by Posture and Position of the Head. Surgical Technology International, 25, 277–79. https://pubmed.ncbi.nlm.nih.gov/25393825/

Paluch, A.E., Gabriel, K.P., Fulton, J.E., et al.(2021). Steps per Day and All-Cause Mortality in Middle-aged Adults in the Coronary Artery Risk Development in Young Adults Study. JAMA Netw Open, 4(9):e2124516. https://doi.org/10.1001/jamanetworkopen.2021.24516

Peper, E., Harvey, R. & Faass, N. (2020). TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics. Berkeley: North Atlantic books. https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/ 


Reduce the spread of COVID and influenza by improving building ventilation

Adapted from the superb article by Sarah Zhang, The plan to stop every respiratory virus at once. The Atlantic. (September 7, 2021).

With good clean air circulation, the risk of transmitting or contracting airborne disease such as COVID-19 during air travel is very low (Pombal, Hosegood & Powell, 2020). Pombal, Hosegood & Powell, 2020 point out that modern airplanes maintain clean air by circulating a mix of fresh air and air recycled through HEPA filter. Air enters from overhead air inlets and flows downward toward floor level outlets at the same seat row or nearby rows. There is little airflow forward and backward between rows.

The risk of transmission or contracting airborne dieases is very high if the airplane ventilation system is not working while passengers are in the plane. For example, when a jet airliner with 54 persons aboard was delayed on the ground for three hours with an inoperative ventilation system 72 % of the passengers became ill with symptoms of cough, fever, fatigue, headache, sore throat and myalgia within 72 hours (Moser et al.,1979).

To reduce the risk of COVID and other airborne infections such as influenza, government policies need to implement strategies to reduce exposure to airborne pathogens and optimize the immune system.  By improving ventilation that reduces and removes airborne pathogens, thousands, if not millions, lives will be saved from being infected or dying of COVID or influenza. 

Before the COVID pandemic between 2010 and 2020 an average of 39,900 people a year died of influenza in the United States and during a severe influenza season such as that occurred in 2017-2018, 61,000 people died (CDC, 2021). Influenza, just as COVID, is caused by an airborne pathogens (viruses).  Although wearing masks significantly reduces the airborne spread of the pathogens, the long term preventative solution is to implement indoor ventilation strategies so that the air is not contaminated in the same way that we expect drinking water not to cause illness. From a public health perspective, changing external environment so the virus is cannot spread is a more effective strategy than depending upon individuals’ actions to prevent the spread of the pathogens.

By improving the air filtration and fresh air circulation in rooms and buildings, COVID, influenza virus and other airborne pathogens can be significantly reduced just as that has been done in modern airplanes. This demands changes in building ventilation codes and design.  It means changing the physical infrastructure and upgrading ventilation systems so that only fresh and/or filtered air circulates through the rooms. This infrastructure improvement would be analogous to what occurred in the 19th century in eventually eliminating the cholera epidemics that killed thousands of people a year.

For example in England during the 1831-1832 and 1848 cholera epidemics more than 50,000 people died each year as they became infected with the toxigenic bacterium Vibrio cholerae which was present the water or foods contaminated with feces from a a person infected with cholera bacterium. Approximately 1 in 10 people who get sick with cholera will develop severe symptoms and without treatment, death can occur within hours (CDC, 2021).

In Londong during the 1854 cholera epidemic Dr. John Snow observed that people who got cholera were drawing water from a the same water pump on Broad Street.  He persuaded the authorities to remove the pump handle which eliminated the use of the contaminated water and stopped the spread of the Cholera.  

The water pump in Broadwick Street.

This public health intervention provided some of the rationale in 19th century  to build the infrastructure to provide clean drinking water and appropriate sewage disposal, so that cholera, typhoid as well as other waterborne diseases epidemics would not enter the drinking water supply.

We now need a similar infrastructure improvement to provide clean air in buildings to stop the spread of COVID-19 variants and influenza. How ventilation affects the spread a virus in a class room is illustrated in the outstanding graphical modeling by Nick Bartzokas et al. (February 26, 2021) in the New York Times article, Why opening windows is a key to reopening schools. The spatial guidelines need to be based upon air flow and not on the distance of separation.

In summary, to prevent future airborne illnesses, local, state and federal government need to create and implement ventilation standards so that airborne pathogens are not spread indoors by contaminated air. This is not rocket science! It is a very solvable problem and has been implemented in airplanes. When the air is HEPA filtered so that passengers do not rebreathe each other’s potentially contaminated exhaled air, airborne transmission is very low. Let’s do the same for the air circulating in buildings.

For an indepth analyses, read the superb article, The Plan to Stop Every Respiratory Virus at Once, by Sarah Zhang published September 7, 2021 in the The Atlantic.

For more details to reduce virus exposure and increase immune competence, see the previoius published blogs,

https://peperperspective.com/2020/04/04/can-you-reduce-the-risk-of-coronavirus-exposure-and-optimize-your-immune-system/

https://peperperspective.com/2021/07/05/reduce-your-risk-of-covid-19-variants-and-future-pandemics/

REFERENCES

Bartzokas, N., Gröndahl,  M., Patanjali, K,  Peyton, M.,Saget, B., & Syam, U. (February 26, 2021). Why opening windows is a key to reopening schools. The New York Times. Downloaded March 1, 2021.

CDC (2021). Disease Burden of Influenza. Center for Disease Control and Prevention. https://www.cdc.gov/flu/about/burden/index.html

Moser, M.R., Bender, T.R., Margolis, H.S., Noble, G.R., Kendal, A.P., & Ritter, D.G. (1979).  An outbreak of influenza aboard a commercial airliner. Am J Epidemiol, 110(1), 1-6. https://doi.org/10.1093/oxfordjournals.aje.a112781

Pombal, R., Hosegood, I., & Powell, D. (2020).  Risk of COVID-19 During Air Travel. JAMA,  324(17), 1798 https://doi.org/10.1001/jama.2020.19108

Zhang, S. (September 7, 2021). The plan to stop every respiratory virus at once. The Atlantic. Downloaded September 13. https://www.theatlantic.com/health/archive/2021/09/coronavirus-pandemic-ventilation-rethinking-air/620000/


Improve learning with peak performance techniques

Erik Peper, PhD and Vietta Wilson, PhD

Adapted from: Peper, E. & Wilson, V. (2021). Optimize the learning state: techniques and habits. Biofeedback, 9(2), 46-49. https://doi.org/10.5298/1081-5937-49-2-04

Long after the COVID-19 pandemic is over, online learning will continue to increase as better methodologies and strategies are developed to implement and integrate it into our lives. This post provides suggestions on how to enhance the learner’s ability to engage while online with the use of pre-performance routines or habits.

Facilitating online learning requires coordination of the teacher, technology, student, environment and the topic. Teachers can enhance engagement (Shoepe et al., 2020) online through different types of prompts: intellectual (associated with instructor interaction, academic challenge, active learning), organizational (associated with enriching academic experiences by directing students, selecting topics and summarizing or redirecting), and social (associated with supportive campus environments by encouraging social interaction, using informal language and affirming student comments).

The student can enhance the satisfaction and quality of the online experience by having a good self-regulated learning style. Learning is impacted by motivation (beliefs about themselves or the task, perceived value, etc.), and metacognition (ability to plan, set goals, monitor and regulate their behavior and evaluate their performance) (Greene & Azevedo, 2010; Mega et al., 2014). While critical for learning, it does not provide information on how students can maintain their optimized performance long term, which is increasingly necessary during the pandemic but will possibly be the model of education and therapy of the future.

Habit can enhance performance across a life span.

Habit is a behavioral tendency tied to a specific context, such as learning to brush one’s teeth while young and continuing through life (Fiorella, 2020). Habits are related to self-control processes that are associated with higher achievement (Hagger, 2019). Sport performance extensively values habit, typically called pre-performance routine, in creating an ongoing optimized state of performance (Lautenbach et al., 2015; Lidor & Mayan, 2005; Mesagno et al., 2015). Habits or pre-performance routines are formed by repeating a behavior tied to a specific context and with continued repetition, wherein the mental association between the context and the response are strengthened. This shifts from conscious awareness to subconscious behavior that is then cued by the environment. The majority of one’s daily actions and behaviors are the results of these habits.

Failure to create a self-regulated learning habit impedes long-term success of students. It does take significant time and reinforcement to create the automaticity of a real-life habit. Lally et al. (2010) tracked real world activities (physical activity, eating, drinking water) and found habit formation varied from 18-254 days with a mean of 66 days. There was wide variability in the creation of the habit and some individuals never reached the stage of automaticity. Interestingly, those who performed the behavior with greater consistency were more likely to develop a habit.

The COVID pandemic resulted in many people working at home, which interrupted many of the covert habit patterns by which they automatically performed their tasks. A number of students reported that everything is the same and that they are more easily distracted from doing the tasks. As one student reported:

After a while, it all seems the same. Sitting and looking at the screen while working, taking classes, entertaining, streaming videos and socializing. The longer I sit and watch screens, the more I tend to feel drained and passive, and the more challenging it is to be present, productive and pay attention.

By having rituals and habits trigger behavior, it is easier to initiate and perform tasks. Students can use the strategies developed for peak performance in sports to optimize their performances so that they can achieve their personal best (Wilson & Peper, 2011; Peper et al., 2021). These strategies include environmental cueing and personal cueing.

Environmental cueing

By taking charge of your environment and creating a unique environment for each task, it is possible to optimize performance specific for each task. After a while, we do not have to think to configure ourselves for the task. It is no different than the sequence before going to sleep: you brush your teeth and if you forget, it feels funny and you probably will get up to brush your teeth.

Previously, many people, without awareness, would configure and reinforce themselves for work by specific tasks such as commuting to go work, being at a specific worksite to perform the work, wearing specific clothing, etc. (Peper et al., 2021). Now there are few or no specific cues tied to working; it tends to be all the same and it is no wonder that people feel less energized and focused.

Many people forget that learning and recall are state-dependent to where the information was acquired. The Zoom environment where we work or attend class is the same environment where we socialize, game, watch videos, message, surf the net and participate in social media. For most, there has been no habit developed for the new reality of in-home learning. To do this, the environment must be set up so the habit state (focused, engaged) is consistently paired with environmental, emotional, social and kinesthetic cues. The environment needs to be reproducible in many locations, situations, and mental states as possible. As illustrated by one student’s report.

To cue myself to get ready for learning, I make my cappuccino play the same short piece of music, wear the same sweater, place my inspiring poster behind my screen, turn off all software notifications and place the cell phone out of visual range.

A similar concept is used in the treatment of insomnia by making the bedroom the only room to be associated with sleep or intimacy (Irish et al., 2017; Suni, 2021). All other activities, arguing with your partner, eating, watching television, checking email, texting, or social media are done at other locations. Given enough time, the cues in the bedroom become the conditioned triggers for sleep and pleasure.

Create different environments that are unique to each category of Zoom involvement (studying, working, socializing, entertaining).

Pre COVID, we usually wore different clothing for different events (work versus party) or visited different environments for different tasks (religious locations for worship; a bar, coffee shop, or restaurant for social gathering). The specific tasks in a specified location had conscious and subconscious cues that included people, lighting, odors, sound or even drinks and food. These stimuli become the classically conditioned cues to evoke the appropriate response associated with the task, just as Pavlov conditioned dogs to salivate when the bell sound was paired with the presentation of meat. Taking charge of the conditioning process at home may help many people to focus on their task as so many people now use their bedroom, kitchen or living room for Zoom work that is not always associated with learning or work. The following are suggestions to create working/learning environments.

  • Wear task-specific clothing just as you would have done going to work or school. When you plan to study or work, put on your work shirt. In time, the moment you put on the work shirt, you are cueing yourself to focus on studying/working. When finishing with working/studying, change your clothing.
  • If possible, maintain a specific location for learning/working. When attending classes or working, sit at your desk with the computer on top of the desk. For games or communication tasks, move to another location.
  • If you can’t change locations, arrange task-specific backgrounds for each category of Zoom tasks. Place a different background such as a poster or wall hanging behind the computer screen—one for studying/working, and another for entertainment. When finished with the specific Zoom event, take down the poster and change the background.
  • Keep the sound appropriate to the workstation area. Try to duplicate what is your best learning/working sound scape.

Personal Cueing

Learning to become aware of and in control of one’s personal self is equally or more important than setting up the environment with cues that foster attention and learning. Practicing getting the body/mind into the learning state can become a habit that will be available in many different learning situations across one’s lifespan.

  • Perform a specific ritual or pre-performance routine before beginning your task to create the learning/performing state. The ritual is a choreographed sequence of actions that gets you ready to perform. For example, some people like to relax before learning and find playing a specific song or doing some stretching before the session is helpful.  Others sit at the desk, turn off all notifications, take a deep breath then look up and state to themselves: “I am now looking forward to working/studying and learning,” “focus” (whatever it may be). For some, their energy level is low and doing quick arm and hand movements, slapping their thighs or face, or small fast jumps may bring them to a more optimal state. For many people smell and taste are the most powerful conditioners, and coffee improves their attention level. Test out an assortment of activities that get your body and mind at the performance level. Practice and modify as necessary.

Just as in sport, the most reliable method is to set up oneself for the learning/performance state, because a person has less control over the environment. For example, when I observed the Romanian rhythmic gymnasts team members practice their routine during the warmup before the international competition, they would act as if it was the actual competition. They stood at the mat preparing their body/mind state, then they would bow to the imaginary judge, wait for a signal to begin, and then perform their routine. On the other hand, most of the American rhythmic gymnasts would just do their practice routine. For the Romanian athletes, the competition was the same as their rehearsal practice. No wonder, the Romanian athletes were much more consistent in their performance. Additionally, ritual helps buffer against uncertainty and anxiety (Hobson et al., 2017).

  • Develop awareness of the body-mind state associated with optimum performance. This can be done by creating a ritual and an environment that evoke the optimum mental and emotional state for learning. As you configure yourself and your environment, explore how you physically feel when you are most focused and engaged. Identify what your posture, muscle tension, and body position feel like during these times, and identify what you are paying attention to. If your attention wanders, observe how you bring your attention back to the task. Does it help focus you to write summary notes or doodle? Do you flag important statements in your head and then visibly nod your head when you understand the concept? Or do you repeat an important cue word?  Find what you do when you are optimally functioning. Then try to reproduce that same state that can be triggered by a key word that tells you what to focus on (e.g., listen to teacher, look at slide, etc.).

In summary, by becoming aware of and controlling one’s environment and personal states that are associated with productive learning, and then practicing them until they become a routine or habit, one can maximize all learning opportunities. This blog presented a few tips, techniques and cues that may help one to maximize attention and increase performance and learning while online.

I noticed when I took the time to prepare and ready myself to be focused and be present during the class, I no longer had to actively work to resist distractions; I was focused in the moment and not worried about emails, other assignments, what to make for dinner, etc…

References

Findlay-Thompson, S. and Mombourquette, P. (2014). Evaluation of a Flipped Classroom in an Undergraduate Business Course. Business Education & Accreditation, v. 6 (1), 63-71.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2331035

Fiorella, L. (2020). The science of habit and its implications for student learning and ell-being. Educational Psychology Review, 32,603–625. https://doi.org/10.1007/s10648-020-09525-1

Greene, J. A., & Azevedo, R. (2010). The measurement of learners’ self-regulated cognitive and metacognitive processes while using computer-based learning environments. Educational Psychologist, 45(4), 203–209. https://doi.org/10.1080/00461520.2010.515935

Hagger, M. S. (2019). Habit and physical activity: Theoretical advances, practical implications, and agenda. Psychology of Sport and Exercise, 42, 118–129. https://doi.org/10.1016/j.psychsport.2018.12.007

Hobson, N. M., Bonk, D., & Inzlicht, M. (2017). Rituals decrease the neural response to performance failure. PeerJ5, e3363. https://doi.org/10.7717/peerj.3363

Irish, L. A., Kline, C. E., Gunn, H. E., Buysse, D. J., & Hall, M. H. (2015). The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep medicine reviews, 22, 23–36. https://doi.org/10.1016/j.smrv.2014.10.001

Lally, P., VanJaarsveld, C. H., Potts, H. W., & Wardle, J. (2010). How habits are formed: Modelling habit formation the real world. European Journal of Social Psychology, 40, 998–1009. https://doi.org/10.1002/ejsp.674

Lautenbach, F., Laborder, S. I., Lobinger, B. H., Mesagno, C. Achtzehn, S., & Arimond, F. (2015). Non automated pre-performance routine in tennis: An intervention study. Journal of Applied Sport Psychology, 27(2), 123-131. https://doi.org/10.1080/10413200.2014.957364

Lidor, R. & Mayan, Z. (2005). Can beginning learners benefit, from pre-performance routines when serving in volleyball? The Sport Psychologist 19(4), 243–263. https://doi.org/10.1123/tsp.19.4.343

Mega, C., Ronconi, L., & De Beni, R. (2014). What makes a good student? How emotions, self-regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 106(1), 121–131. https://doi.org/10.1037/a0033546

Mesagno, C., Hill, D. M., & Larkin, P. (2015). Examining the accuracy and in game performance effects between pre- and post-performance routines: A mixed methods study. Psychology of Sort and Exercise, 19, 85–94. https://doi.org/10.1016/j.psychsport.2015.03.005

Peper, E., Wilson, V., Martin, M., Rosegard, E., & Harvey, R. (2021). Avoid Zoom fatigue, be present and learn. NeuroRegulation, 7(1).

Shoepe, T. C., McManus, J. F., August, S. E., Mattos, N. L., Vollucci, T. C. & Sparks, P. R. (2020). Instructor prompts and student engagement in synchronous online nutrition classes. American Journal of Distance Education, 34, 194–210. https://doi.org/10.1080/08923647.2020.1726166

Suni, E. (2021). Sleep Hygiene. https://www.sleepfoundation.org/sleep-hygiene.

Wilson, V. E. & Peper, E. (2011). Athletes are different: factors that differentiate biofeedback/neurofeedback for sport versus clinical practice. Biofeedback, 39(1), 27–30. https://doi.org/10.5298/1081-5937-39.1.01


Digital fatigue and what to do

Erik Peper, PhD and Monica Almendras

The article was adapted from the recent book, How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, and was originally published on the Big Q  https://www.thebigq.org/2021/08/02/why-do-we-have-zoom-fatigue-and-what-can-we-do-about-it/

Why is it that after studying, working, entertaining and socializing at the computer screen or looking at texts, Instagram, Facebook, Tiktok or responding to notifications on the cellphone, we often feel exhausted (zoom fatigue) and experience neck, back and shoulders discomfort, or eye irritation? Time disappears as we surf the web and go down the rabbit hole by clicking on one and then another link or responding to social media. As time flies, we tend to be unaware that our muscles tighten, our breathing become shallow and quicker, our blinking rates decreases and our posture slouches forward as we bring our nose close to the screen to see the text more clearly.

Become aware what happens when you do the following experiential practices

Observe what happens when you mouse

Sit comfortable in an erect posture as if you are in front of your computer and hold a small object that you can use to simulate mousing to the side of the keyboard. With an actual mouse (or the sham mouse), pretend to draw the letters of your name and your street address backward, right to left. Be sure each letter is very small (less than half an inch in height). After drawing each letter, right click. Draw the letters and numbers as quickly as possible without making any mistakes for fifteen seconds.  Stop and observe what happened in your body.

If you are like almost all participants you tightened your neck and shoulders, stiffened your trunk, held your breath and most did not blink.  All this occurred without awareness. Over time, this covert tension can contribute to discomfort, soreness, pain, or eventual injury.

Observe the effect of low static muscle tension

You probably felt discomfort in the muscles of your hip.  As you lifted your knee up, you most likely also held your breath and tightened your neck and back.  Holding your muscles in a static position for more than a few minutes creates discomfort. Yet, when you walk you use the same muscles and usually do not experience discomfort.  The main difference is that during walking you sequentially tighten and relax these muscles. Each time the muscle relaxes, blood flow is restored to remove the waste produces of metabolism and supply nutrients and oxygen to the muscle tissue. For more information, see the blog, Reactivate your second heart.

From the evolutionary perspective, people typically shifted between sitting, walking, and moving in varied ways during specified forms of labor which tends to tighten and relax different muscles.  Therefore, incorporate dynamic movement’ during the day: Stand up, wiggle and move several times an hour. To avoid sitting disease, install a break reminder program such as StretchBreak on your computer or other digital devices.  When people implement taking breaks, they report having much more energy at the end of the day.  As one participant stated: “There is now life after five”.  What he meant was that at the end of the day when he got home, he still had energy to other things.

Observe how breathing and opening eyes affect tearing

Inhale with a gasp as you open your eyes. Close your eyes, then exhale and inhale with a gasp as if you are surprised and at the same time open your eyes then look as if you are quickly responding to a notification. Repeat one or two time and be sure to open your eyes wide the moment you gasp as you inhale

Exhale and slowly open your eyes. Close your eyes, then inhale by allowing your abdomen to expand and begin exhaling and slowly open your eyes. Repeat one or two more times as you open your eyes midway through the exhalation, while your shoulders relax. What did you experience?

Most likely when you opened your eyes while exhaling you found that your eyes felt more relaxed with more tearing moisture in the eyes, while gasping and looking the eyes felt tense and more dry.  In most cases when we focus without awareness intensely at the screen we create eye tension. Thus, practice blinking by resting and closing your eyes then gently open your eyes as you exhale and then looking at the far distance relax the muscles of the eyes. For detailed instructions see the blog, Are you encouraging your child to get into accidents or even blind when growing up?

We are usually unaware that our bodies respond automatically and that these patterns occur covertly and totally without awareness while working at the computer or responding to texts. We only notice when symptoms of discomfort occur. Fortunately, it is possible to monitor the degree of muscle tension with an electromyograph (EMG).  The unaware muscle tension can be identified by physiological recording of the electrical activity produced when they contract.  With biofeedback and coaching people can learn to become aware of the covert tension and as shown in Figure 1.

Figure 1. A representative recording of a person working at the computer. Note the following: 1) forearm and shoulder (deltoid/trapezius) muscle tension increased as the person rests her hands on the keyboard without typing; 2) respiration rate increased during typing and mousing; 3) shoulder muscle tension increased during typing and mousing; and, 4) there were no rest periods in the shoulder muscles as long as the fingers are either resting, typing, or mousing. Reproduced by permission from Peper & Harvey, 2008.

Even though the physiological recording showed increase tension when the hands were resting on the keyboard, the person reported being relaxed.  The person was also not aware that her neck and shoulder muscles stayed contracted without any momentary rest and recovery periods nor that her breathing rate and heart rate significantly increased.  The covert muscle activity and shallow breathing will also interact with the person’s stress level, as well as ergonomic equipment use and the posture throughout the day.  Similarly, we tend to be unaware that we slouch which would increase neck and back tension as well as, affect breathing as illustrated in figure 2. 

Figure 2. The effect of slouching on neck and shoulder muscle tension and breathing. Reproduced by permission from Peper, E., Harvey, R. and Faass, N. (2020). TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, Berkeley, CA. North Atlantic Books.

Maintaining and optimizing health at the computer means re-envisioning our relationship with technology—reclaiming health, happiness, and sanity in a plugged-in world.  We have the ability to control everything from our mobile phones without needing to get up from our seat. Work, social life and online learning all involve the mobile phone or some type of smart devices. A convenient little device that is supposed to simplify our lives has actually trapped us into a vicious cycle of relying on it for every single thing we must do.  We spend most of our day being exposed to digital displays on our smartphones, computers, gaming consoles, and other digital devices, immersing ourselves in the content we are viewing. From work related emails or tasks, to spending our free time looking at the screen for texting, playing games, and updating social media sites on a play-by-play of what we are eating, wearing, and doing. A typical thing to do on our devices is to click on one hyperlink after the other and create a vicious cycle in which we are trapped for hours until we realize we need to move. As we do this, we are unaware how much time has frittered away without actually doing anything productive and then, we realize we have wasted another day.

Transform digital fatique into digital health (adapted from https://news.sfsu.edu/news-story/professors-share-tips-healthy-tech-usage-during-pandemic)

Get up and move                              

About every 20 minutes, stand up and move your body. Consider doing a quick dance to a favorite song or taking a walk around the block. “It will feel silly, yet actively moving is one of the quickest energizers,” Stretching and moving will also relax those muscles that you tense constantly when working at a desk. Think you’ll forget to take a break? Install the free Stretch Break app as a great tool to remind you. For more background information, see the blog, Sitting disease is the new health hazard.

Blink and look far off

Our blinking rate significantly decreases while looking at a screen, which contributes to eye strain. A good way to address this is by blinking every time you click on a hyperlink or after you finish typing a paragraph. To relax the eyes, look at the far distance. “Looking out into the distance disrupts constant near-focus muscle tension in the eyes.” For more suggestions, see the blog, Resolve Eyestrain and Screen Fatigue.

Avoid phones and screens right before bed

Many people use their phones before bed, which can make it more difficult to sleep. Take a break from your phone half an hour or more before bedtime. Electronic screens emit blue light, which can send a signal to your brain that it’s daytime. This suppresses your body’s production of the hormone melatonin, which helps your body know when it’s time to sleep. In addition, keeping up with social media and watching digital media tends to be thought-provoking or anxiety-inducing may stimulate the mind and promote wakefulness. For more suggestions, see the blog, Are LED screens harming you?

Optimize ergonomics

Make sure your computer setup is ergonomically friendly. Your desktop keyboard should be positioned so that your forearms are a few inches above your waist. The top of your screen should be around eyebrow level, which should naturally cause your eyes to look slightly downward at the screen.

Unfortunately, using a laptop or a phone causes people to look down in an unhealthy way that can make them slouch and induce neck or back pain. The solution is to get an external keyboard along with a laptop stand. Getting an external monitor can also help. For more detailed suggestions, see the blogs, Cartoon ergonomics for working at the computer and laptop and Reduce TechStress at Home.

Sit erect and stop slouching

As we work at the computer, we unknowingly tend to slouch which increases the risk of neck and shoulder discomfort and evoking thoughts and feelings. Take control of your slouching with a posture feedback device and app such as UpRight Go [3] that reminds you when you slouch as shown in Figure 3. Each time you the device signals you that you slouch, sit up straight, move, breathe, and think of a positive thought. For more suggestions, see the blog, “Don’t slouch!” Improve health with posture feedback.

Figure 3.  Using posture feedback to become aware of slouching. Reproduced by permission from Peper, E., Harvey, R. and Faass, N. (2020). TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, Berkeley, CA. North Atlantic Books.

Practice slow diaphragmatic breathing

Breathe deeply and slowly to restore a natural rhythm. As we work, we tend to breathe more shallowly, which increases anxiety and our heart rate. To counteract this, take three deep breaths for five seconds, then exhale very slowly for six seconds. For more instructions on slower diaphragmatic breathing, see the blog, Healing irritable bowel syndrome with diaphragmatic breathing.

Give undivided attention and be present

Phones have become so ingrained in our lives that we use them constantly throughout the day. Harvey stresses that people should make a conscious effort to limit phone usage, especially when socializing. When we respond to a phone notification during a Zoom hangout with friends or while talking to our family members, people may feel dismissed. This often increases a sense of social isolation, so give people your total attention when interacting with them. For more suggestions, see the blog, Configure your brain to learn and avoid Zoom fatigue.



Reduce your risk of COVID-19 variants and future pandemics

Erik Peper, PhD and Richard Harvey, PhD

The number of hospitalizations and deaths from COVID-19 are decreasing as more people are being vaccinated. At the same time, herd immunity will depend on how vaccinated and unvaccinated people interact with one another. Close-proximity, especially indoor interactions, increases the likelihood of transmission of coronavirus for unvaccinated individuals.  During the summer months, people tend to congregate outdoors which reduces viral transmission and also increases vitamin D production which supports the immune system (Holick, 2021)..

Most likely, COVID-19 disease will become endemic because the SARS-CoV-2 virus will continue to mutate.  Already Pfizer CEO Albert Bourla stated on April 15, 2021 that  people will “likely” need a third dose of a Covid-19 vaccine within 12 months of getting fully vaccinated.  Although, at this moment the vaccines are effective against several variants, we need to be ready for the next COVID XX outbreak. 

To reduce future infections, the focus of interventions should 1) reduce virus exposure, 2) vaccinate to activate the immune system, and 3) enhance the innate immune system competence. The risk of illness may relate to virus density exposure and depend upon the individual’s immune competence (Gandhi & Rutherford, 2020; Mukherjee, 2020) which can be expressed in the following equation.

Reduce viral load (hazardous exposure)

Without exposure to the virus and its many variants, the risk is zero which is impossible to achieve in democratic societies.  People do not live in isolated bubbles but in an interconnected world and the virus does not respect borders or nationalities. Therefore, public health measures need to focus upon strategies that reduce virus exposure by encouraging or mandating wearing masks, keeping social distance, limiting social contact, and increasing fresh air circulation.

Wearing masks reduces the spread of the virus since people may shed viruses one or two days before experiencing symptoms (Lewis et al., 2021). When a person exhales through the mask, a good fitting N95 mask will filter out most of the virus and thereby reduce the spread of the virus during exhalation. To protect oneself from inhaling the virus, the mask needs be totally sealed around the face with the appropriate filters. Systematic observations suggest that many masks such as bandanas or surgical masks do not filter out the virus (Fisher et al., 2020).

Fresh air circulation reduces the virus exposure and is more important than the arbitrary 6 feet separation (CDC, May 13, 2021). If separated by 6 feet in an enclosed space, the viral particles in the air will rapidly increase even when the separation is 10 feet or more. On the other hand, if there is sufficient fresh air circulation, even three feet of separation would not be a problem. The spatial guidelines need to be based upon air flow and not on the distance of separation as illustrated in the outstanding graphical modeling schools by Nick Bartzokas et al. (February 26, 2021) in the New York Times article, Why opening windows is a key to reopening schools.

The public health recommendations of sheltering-in-place to prevent exposure or spreading the  virus may also result in social isolation. Thus, shelter-in-place policies have resulted in compromising physical health such as weight gain (e.g. average increase of more than 7lb in weight  in America according to Lin et al., 2021), reduced physical activity and exercise levels (Flanagan et al., 2021) and increased anxiety and depression (e.g. a three to four fold increase in the self-report of anxiety or depression according to Abbott, 2021).  Increases in weight, depression and anxiety symptoms tend to decrease immune competence (Leonard, 2010). In addition, the stay at home recommendations especially in the winter time meant that individuals  are less exposed to sunlight which results in lower vitamin D levels which is correlated with increased COVID-19 morbidity (Seheult, 2020).

Increase immune competence

Vaccination is the primary public health recommendation to prevent the spread and severity of COVID-19. Through vaccination, the body increases its adaptive capacity and becomes primed to respond very rapidly to virus exposure. Unfortunately, as Pfizer Chief Executive Albert Bourla states, there is “a high possibility” that emerging variants may eventually render the company’s vaccine ineffective (Steenhuysen, 2021). Thus, it is even more important to explore strategies to enhance immune competence independent of the vaccine.

Public Health policies need to focus on intervention strategies and positive health behaviors that optimize the immune system capacity to respond.  The research data has been clear that COVID -19 is more dangerous for those whose immune systems are compromised and have comorbidities such as diabetes and cardiovascular disease, regardless of age.  

Comorbidity and being older are the significant risk factors that contribute to COVID-19 deaths. For example, in evaluating all patients in the Fair Health National Private Insurance Claims (FH NPIC’s) longitudinal dataset, researchers identified 467,773 patients diagnosed with COVID-19 from April 1, 2020, through August 31, 2020.  The severity of the illness and death from COVID-19 depended on whether the person had other co-morbidities first as shown in Figure 1.

Figure 1. The distribution of patients with and without a comorbidity among all patients diagnosed with COVID-19 (left) and all deceased COVID-19 patients (right) April-August 2020. Reproduced by permission from: https://www.ajmc.com/view/contributor-links-between-covid-19-comorbidities-mortality-detailed-in-fair-health-study

Each person who died had about 2 or 3 types of pre-existing co-morbidities such as cardiovascular disease, hypertension, diabetes, obesity, congestive heart failure, chronic kidney disease, respiratory disease and cancer (Ssentongo et al., 2020; Gold et al., 2020). The greater the frequency of comorbidities the greater the risk of death, as shown in Figure 2.

Figure 2.  Across all age groups, the risk of COVID-19 death increased significantly as a patient’s number of comorbidities increased. Compared to patients with no comorbidities.  Reproduced by permission from https://s3.amazonaws.com/media2.fairhealth.org/whitepaper/asset/Risk%20Factors%20for%20COVID-19%20Mortality%20among%20Privately%20Insured%20Patients%20-%20A%20Claims%20Data%20Analysis%20-%20A%20FAIR%20Health%20White%20Paper.pdf

Although the risk of serious illness and death is low for young people, the presence of comorbidity increases the risk. Kompaniyets et al. (2021) reported that for patients under 18 years with severe COVID-19 illness who required ICU admission, mechanical ventilation, or died most had underlying medical conditions such as asthma, neurodevelopmental disorders, obesity, essential hypertension or complex chronic diseases such as malignant neoplasms or multiple chronic conditions.

Consistent with earlier findings, the Fair Health National Private Insurance Claims (FH NPIC’s) longitudinal dataset also showed that  the COVID-19 mortality rate rose sharply with age as shown in Figure 3.

Figure 3  Percent mortality among COVID-19 patients by age, April-August 2020. Reproduced by permission from: https://s3.amazonaws.com/media2.fairhealth.org/whitepaper/asset/Risk%20Factors%20for%20COVID-19%20Mortality%20among%20Privately%20Insured%20Patients%20-%20A%20Claims%20Data%20Analysis%20-%20A%20FAIR%20Health%20White%20Paper.pdf

Optimize antibody response from vaccinations

Assuming that the immune system reacts similarly to other vaccinations, higher antibody response is evoked when the vaccine is given in the morning versus the afternoon or after exercise (Long et al., 2016; Long et al., 2012).  In addition, the immune response may be attenuated if the person suppresses the body’s natural immune response–the flulike symptoms which may occur after the vaccination–with Acetaminophen (Tylenol (Graham et al, 1990).

Support the immune system with a healthy life style

Support the immune system by implementing a lifestyle that reduces the probability of developing comorbidities.  This means reducing risk factors such as vaping, smoking, immobility and highly processed foods. For example, young people who vape experience a fivefold increase to become seriously sick with COVID-19 (Gaiha, Cheng, & Halpern-Felsher, 2020); similarly, cigarette smoking increases the risk of COVID morbidity and mortality (Haddad, Malhab, & Sacre, 2021).  

There are many factors that have contributed to the epidemic of obesity, diabetes, cardiovascular disease and other chronic diseases.  In many cases, the environment and lifestyle factors (lack of exercise, excessive intake of highly processed foods, environmental pollution, social isolation, stress, etc.) significantly contribute to the initiation and development of comorbidities. Genetics also is a factor; however, the generic’s risk factor may not be triggered if there are no environmental/behavioral exposures.  Phrasing it colloquially, Genetics loads the gun, environment and behavior pulls the trigger. Reducing harmful lifestyle behaviors and environment is not simply an individual’s responsibility but a corporate and governmental responsibility. At present, harmful lifestyles choices are actively supported by corporate and government policies that choose higher profits over health.  For example, highly processed foods made from corn, wheat, soybeans, rice are grown by farmers with US government farm subsidies. Thus, many people especially of lower economic status live in food deserts where healthy non-processed organic fruits and vegetable foods are much  less available and more expensive (Darmon & Drewnowski, 2008; Michels, Vynckier, Moreno, L.A. et al.  2018; CDC, 2021).   In the CDC National Health and Nutrition Examination Survey that analyzed the diet of 10,308 adults, researchers Siegel et al. (2016) found that “Higher consumption of calories from subsidized food commodities was associated with a greater probability of some cardiometabolic risks” such as higher levels of obesity and unhealthy blood glucose levels (which raises the risk of Type 2 diabetes).

Immune competence is also affected by many other factors such as  exercise, stress, shift work, social isolation, and reduced micronutrients and Vitamin D (Zimmermann & Curtis, 2019).   Even being sedentary increases the risk of dying from COVID as reported by the Kaiser Permanente Southern California study of 50,000 people who developed COVID (Sallis et al., 2021). 

People who exercised 10 minutes or less each week were hospitalized twice as likely and died 2.5 times more than people who exercised 150 minutes a week (Sallis et al., 2021).  Although exercise tends to enhance immune competence (da Silveira et al, 2020), it is highly likely that exercise is a surrogate marker for other co-morbidities such as obesity and heart disease as well as aging.  At the same time sheltering–in-place along with the increase in digital media has significantly reduced physical activity. 

The importance of vitamin D

Low levels of vitamin D is correlated with poorer prognosis for patients with COVID-19 (Munshi et al., 2021). Kaufman et al. (2020) reported that the positivity rate correlated inversely with vitamin D levels  as shown in figure 4.

Figure 4. SARS-CoV-2 NAAT positivity rates and circulating 25(OH)D levels in the total population.  From: Kaufman, H.W., Niles, J.K., Kroll, M.H., Bi, C., Holick, M.F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 15(9):e0239252. https://doi.org/10.1371/journal.pone.0239252

Vitamin D is a modulator for the immune system (Baeke, Takiishi, Korf, Gysemans, & Mathieu, 2010).  There is an inverse correlation of all-cause, cardiovascular, cancer, and respiratory disease mortality with hydroxyvitamin D concentrations in a large cohort study (Schöttker et al., 2013). For a superb discussion about how much vitamin D is needed, see the presentation, The D-Lightfully Controversial Vitamin D: Health Benefits from Birth until Death, by Dr. Michael F. Holick, Ph.D., M.D. from the University Medical Center Boston.

Low vitamin D levels may partially explain why in the winter there is an increase in influenza. During winter time, people have reduced sunlight exposure so that their skin does not produce enough vitamin D. Lower levels of vitamin D may be a cofactor in the increased rates of COVID among people of color and older people. The darker the skin, the more sunlight the person needs to produce Vitamin D and as people become older their skin is less efficient in producing vitamin D from sun exposure (Harris, 2006; Gallagher, 2013).  Vitamin D also moderates macrophages by regulating the release, and the over-release of inflammatory factors in the lungs (Khan et al., 2021).

Watch the interesting presentation by Professor Roger Seheult, MD, UC Riverside School of Medicine, Vitamin D and COVID 19: The Evidence for Prevention and Treatment of Coronavirus (SARS CoV 2). 12/20/2020. https://www.youtube.com/watch?v=ha2mLz-Xdpg

What can be done NOW to enhance immune competence?

We need to recognize that once the COVID-19 pandemic has passed, it does not mean it is over.  It is only a reminder that a new COVID-19 variant or another new virus will emerge in the future.  Thus, the government public health policies need to focus on promoting health over profits and aim at strategies to prevent the development of chronic illnesses that affect immune competence. One take away message is to incorporate behavioral medicine prescriptions supporting a healthy lifestyle  into treatment plans, such as prescribing a walk in the sun to increase vitamin D production and develop dietary habits of eating organic locally grown vegetable and fruits foods.  Even just reducing the refined sugar content in foods and drinks is challenging although it may significantly reduce incidence and prevalence of obesity and diabetes (World Health Organization, 2017. The benefits of such an approach has been clearly demonstrated by the Pennsylvania-based Geisinger Health System’s  Fresh Food Farmacy. This program for food-insecure people with Type 2 diabetes and their families provides enough fresh fruits and vegetables, whole grains, and lean proteins for two healthy meals a day five days a week. After one year there was a 40 percent decrease in the risk of death or serious complications and an 80 percent drop in medical costs per year (Brody, 2020).

The simple trope of this article ‘eat well, exercise and get good rest’ and increase your immune competence concludes with some simple reminders. 

  • Increase availability of organic foods since they do not contain pesticides such as glyphosate residue that reduce immune competence.
  • Increase vegetable and fruits and reduce highly processed foods, simple carbohydrates and sugars.
  • Decrease sitting and increase movement and exercise
  • Increase sun exposure without getting sunburns
  • Master stress management
  • Increase social support

For additional information see: https://peperperspective.com/2020/04/04/can-you-reduce-the-risk-of-coronavirus-exposure-and-optimize-your-immune-system/

References

Abbott, A. (2021). COVID’s mental-health toll: Scientists track surge in depression. Nature, 590, 19-195.

Bartzokas, N., Gröndahl,  M., Patanjali, K,  Peyton, M.,Saget, B., & Syam, U. (February 26, 2021). Why opening windows is a key to reopening schools. The New York Times. Downloaded March 1, 2021.

Baeke, F., Takiishi, T., Korf,  H., Gysemans, C., & Mathieu, C. (2010). Vitamin D: modulator of the immune system,Current Opinion in Pharmacology,10(4), 482-496. https://doi.org/10.1016/j.coph.2010.04.001

Brody, J. (2020). How Poor Diet Contributes to Coronavirus Risk. The New York Times, April 20, 2020. https://www.nytimes.com/2020/04/20/well/eat/coronavirus-diet-metabolic-health.html?referringSource=articleShare

CDC. (2021). Adult Obesity Prevalence Maps. Centers for Disease Control and Prevention. https://www.cdc.gov/obesity/data/prevalence-maps.html#nonhispanic-white-adults

CDC. (May 13, 2021). Ways COVID-19 Spreads. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html

Darmon, N. & Drewnowski, A. (2008). Does social class predict diet quality?, The American Journal of Clinical Nutrition, 87(5), 2008, 1107–1117. https://doi.org/10.1093/ajcn/87.5.1107

da Silveira, M. P., da Silva Fagundes, K. K., Bizuti, M. R., Starck, É., Rossi, R. C., & de Resende E Silva, D. T. (2021). Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clinical and experimental medicine21(1), 15–28. https://doi.org/10.1007/s10238-020-00650-3

Elflein, J. (2021). COVID-19 deaths reported in the U.S. as of January 2, 2021, by age.  Downloaded, 1/13/2021 from  https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/

Fisher, E. P., Fischer, M.C., Grass, D., Henrion, I., Warren, W.S., & Westmand, E. (2020). Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Science Advance, (6) 36, eabd3083. https://doi.org/10.1126/sciadv.abd3083

Flanagan. E.W., Beyl, R.A., Fearnbach, S.N., Altazan, A.D., Martin, C.K., & Redman, L.M. (2021). The Impact of COVID-19 Stay-At-Home Orders on Health Behaviors in Adults. Obesity (Silver Spring),  (2), 438-445. https://doi.org/10.1002/oby.23066

Gaiha, S.M., Cheng, J., & Halpern-Felsher, B. (2020). Association Between Youth Smoking, Electronic Cigarette Use, and COVID-19. Journal of Adolescent Health, 67(4), 519-523. https://doi.org/10.1016/j.jadohealth.2020.07.002

Gallagher J. C. (2013). Vitamin D and aging. Endocrinology and metabolism clinics of North America42(2), 319–332. https://doi.org/10.1016/j.ecl.2013.02.004

Gandhi, M. & Rutherford, G. W. (2020). Facial Masking for Covid-19 — Potential for “Variolation” as We Await a Vaccine.  New England Journal of Medicine, 383(18), e101 https://www.nejm.org/doi/full/10.1056/NEJMp2026913

Gold, M.S., Sehayek, D., Gabrielli, S., Zhang, X., McCusker, C., & Ben-Shoshan, M. (2020). COVID-19 and comorbidities: a systematic review and meta-analysis. Postgrad Med, 132(8), 749-755. https://doi.org/10.1080/00325481.2020.1786964

Graham, N.M., Burrell, C.J., Douglas, R.M., Debelle, P., & Davies, L. (1990).  Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers. J Infect Dis., 162(6), 1277-82. https://doi.org/10.1093/infdis/162.6.1277

Haddad, C., Malhab, S.B., & Sacre, H. (2021). Smoking and COVID-19: A Scoping Review. Tobacco Use Insights, 14, First Published February 15, 2021. https://doi.org/10.1177/1179173X21994612

Harris, S.S. (2006). Vitamin D and African Americans. The Journal of Nutrition, 136(4), 1126-1129. https://doi.org/10.1093/jn/136.4.1126

Kaufman, H.W., Niles, J.K., Kroll, M.H., Bi, C., Holick, M.F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 15(9):e0239252. https://doi.org/10.1371/journal.pone.0239252

Khan, A. H., Nasir, N., Nasir, N., Maha, Q., & Rehman, R. (2021). Vitamin D and COVID-19: is there a role?. Journal of Diabetes & Metabolic Disorders, 1-8. https://doi.org/10.1007/s40200-021-00775-6

Kompaniyets, L., Agathis, N.T., Nelson, J.M., et al. (2021). Underlying Medical Conditions Associated With Severe COVID-19 Illness Among Children. JAMA Netw Open.  4(6):e2111182. https://doi.org/10.1001/jamanetworkopen.2021.11182

Leonard B. E. (2010). The concept of depression as a dysfunction of the immune system. Current immunology reviews6(3), 205–212. https://doi.org/10.2174/157339510791823835

Lewis, N. M., Duca, L. M., Marcenac, P., Dietrich, E. A., Gregory, C. J., Fields, V. L….Kirking, H. L. (2021). Characteristics and Timing of Initial Virus Shedding in Severe Acute Respiratory Syndrome Coronavirus 2, Utah, USA. Emerging Infectious Diseases27(2), 352-359. https://doi.org/10.3201/eid2702.203517

Lin, A.L., Vittinghoff, E., Olgin, J.E., Pletcher, M.J., & Marcus, G.M. (2021). Body Weight Changes During Pandemic-Related Shelter-in-Place in a Longitudinal Cohort Study. JAMA Netw Open, 4(3):e212536. doi:10.1001/jamanetworkopen.2021.2536

Long, J.E., Drayson, M.T., Taylor, A.E., Toellner, K.M., Lord, J.M., & Phillips, A.C. (2016).  Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine, 34(24), 2679-85. https://doi.org/10.1016/j.vaccine.2016.04.032.

Long. J.E., Ring, C., Drayson, M., Bosch, J., Campbell, J.P., Bhabra, J., Browne, D., Dawson, J., Harding, S., Lau, J., & Burns, V.E. (2012). Vaccination response following aerobic exercise: can a brisk walk enhance antibody response to pneumococcal and influenza vaccinations? Brain Behav Immun., 26(4), 680-687.  https://doi.org/10.1016/j.bbi.2012.02.004

Merelli, A. (2021, February 2). Pfizer’s Covid-19 vaccine is set to be one of the most lucrative drugs in the world. QUARTZ. https://qz.com/1967638/pfizer-will-make-15-billion-from-covid-19-vaccine-sales/

Michels, N., Vynckier, L., Moreno, L.A. et al. (2018). Mediation of psychosocial determinants in the relation between socio-economic status and adolescents’ diet quality. Eur J Nutr, 57, 951–963. https://doi.org/10.1007/s00394-017-1380-8

Mukherjee, S. (2020). How does the coronavirus behave inside a patient? We’ve counted the viral spread across peoples; now we need to count it within people. The New Yorker, April 6, 2020. https://www.newyorker.com/magazine/2020/04/06/how-does-the-coronavirus-behave-inside-a-patient?utm_source=onsite-share&utm_medium=email&utm_campaign=onsite-share&utm_brand=the-new-yorker

Munshi, R., Hussein, M.H., Toraih, E.A., Elshazli, R.M., Jardak, C., Sultana, N., Youssef, M.R., Omar, M., Attia, A.S., Fawzy, M.S., Killackey, M., Kandil, E., & Duchesne, J. (2020) Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol, 93(2), 733-740. https://doi.org/10.1002/jmv.26360

Renoud. L, Khouri, C., Revol, B., et al. (2021) Association of Facial Paralysis With mRNA COVID-19 Vaccines: A Disproportionality Analysis Using the World Health Organization Pharmacovigilance Database. JAMA Intern Med. Published online April 27, 2021. https://doi.org/10.1001/jamainternmed.2021.2219

Sallis, R., Young, D. R., Tartof, S.Y., et al. (2021). Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. British Journal of Sports Medicine.  Published Online First: 13 April 2021http://dx.doi.org/10.1136/bjsports-2021-104080

Schöttker, B., Haug, U., Schomburg, L., Köhrle, L., Perna, L., Müller. H., Holleczek, B., & Brenner. H. (2013). Strong associations of 25-hydroxyvitamin D levels with all-cause, cardiovascular, cancer and respiratory disease mortality in a large cohort study. American Journal of Clinical Nutrition, 97(4), 782–793 2013; https://doi.org/10.3945/ajcn.112.047712

Siegel, K.R., McKeever Bullard, K., Imperatore. G., et al. (2016). Association of Higher Consumption of Foods Derived From Subsidized Commodities With Adverse Cardiometabolic Risk Among US Adults. JAMA Intern Med. 176(8), 1124–1132. https://doi.org/10.1001/jamainternmed.2016.2410

Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM (2020) Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS ONE 15(8): e0238215. https://doi.org/10.1371/journal.pone.0238215

Steenhuysen, J. 2021, Jan 30). Fresh data show toll South African virus variant takes on vaccine efficacy. Accessed January 31, 2021. https://www.reuters.com/article/us-health-coronavirus-vaccines-variant/fresh-data-show-toll-south-african-virus-variant-takes-on-vaccine-efficacy-idUSKBN29Z0I7

World Health Organization. (2017). Sugary drinks1 – a major contributor to obesity and diabetes. WHO/NMH/PND/16.5 Rev. https://apps.who.int/iris/bitstream/handle/10665/260253/WHO-NMH-PND-16.5Rev.1-eng.pdf?sequence=1

Zimmermann, P. & Curtis, N. (2019). Factors That Influence the Immune Response to Vaccination. Clinical Microbiology Reviews, 32(2), 1-50.  https://doi.org/10.1128/CMR.00084-18


Useful resources about breathing, phytonutrients and exercise

Dysfunctional breathing, eating highly processed foods, and lack of movement contribute to development of illnesses such as cancer, diabetes, cardiovascular disease and many chronic diseases.  They also contributes to immune dysregulation that increases vulnerability to infectious diseases, allergies and autoimmune diseases. If you wonder what breathing patterns optimize health, what foods have the appropriate phytonutrients to support your immune system, or what the evidence is that exercise reduces illness and promotes longevity, look at the following resources.

Breath: the mind-body connector that underlies health and illness

Read the outstanding article by Martin Petrus (2021). How to breathe.

https://psyche.co/guides/how-to-breathe-your-way-to-better-health-and-transcendence

You are the food you eat

Watch the superb webinar presentation by Deanna Minich, MS., PHD., FACN, CNS, (2021) Phytonutrient Support for a Healthy Immune System.

Movement is life

Explore the summaries of recent research that has demonstrated the importance of exercise to increase healthcare saving and reduce hospitalization and death.