Biofeedback, posture and breath: Tools for health

Two recent presentations that that provide concepts and pragmatic skills to improve health and well being.  

How changing your breathing and posture can change your life.

In-depth podcast in which Dr. Abby Metcalf, producer of Relationships made easy, interviews Dr. Erik Peper.  He discusses how changing your posture and how you breathe may result in major improvement with issues such as anxiety, depression, ADHD, chronic pain, and even insomnia! In the presentation he explain how this works and shares practical tools to make the changes you want in your life.

How to cope with TechStress

A wide ranging discussing between Dr. Russel Jaffe and Dr Erik that explores the power of biofeedback, self-healing strategies and how to cope with tech-stress.

These concepts are also explored in the book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics.  You may find this book useful as we spend so much time working online. The book describes the impacts personal technology on our physical and emotional well-being. More importantly, “Tech Stress” provides all of the basic tools to be able not only to survive in this new world but also thrive in it.

Additiona resources:

Gonzalez, D. (2022). Ways to improve your posture at home.


Hope for insomnia, depression, anxiety, ADHD, exhaustion, and nasal congestion -Breathe light, slow and deep

Anxiety, depression, insomnia, exhaustion, ADHD, allergies, poor performance have all increased (Barendse et al., 2021; London & Landes, 2021; Peper et al, 2022a; Peper et al, 2022b; Vasileiadou et al, 2021). One of the unrecognized contributing factor is dysfunctional mouth breathing (McKeown, 2022). Improve health by learning to breathe in and out through the nose during the day and night. Listen to the inspiring presentation by Patrick McKeown, author of the superb book, The breathing cure-Develop  new habits for a healthier, happier & long life (McKeown, 2022). In this presentation, he describes the science behind these disorders, the rationale for breathing light, slow and deep and offers simple breathing exercises to reduce symptoms and improve performance.

References

Barendse, M., Flannery, J., Cavanagh, C., Aristizabal, M., Becker, S. P., Berger, E., … & Pfeifer, J. (2021). Longitudinal change in adolescent depression and anxiety symptoms from before to during the COVID-19 pandemic: A collaborative of 12 samples from 3 countries. https://doi.org/10.31234/osf.io/hn7us

London, A.S. & Landes, S.D. (2021). Cohort Change in the Prevalence of ADHD Among U.S. Adults: Evidence of a Gender-Specific Historical Period Effect.  Journal of attention disorders, 25(6), 771-782. https://doi.org/10.1177/1087054719855689

McKeown, P. (2022). The breathing cure-Develop  new habits for a healthier, happier & long life.  West Palm Beach, FL: Humanix Books.

Peper, E. (2022). Reduce anxiety. the peperperspective. https://peperperspective.com/2022/03/23/reduce-anxiety/

Peper, E., Harvey, R., Cuellar, Y., & Membrila, C. (2022b). Reduce  anxiety. NeuroRegulation, 9(2), 91–97. https://doi.org/10.15540/nr.9.2.91  

Vasileiadou, S., Ekerljung, L., Bjerg, A., & Goksor, E. (2021). Asthma increased in young adults from 2008–2016 despite stable allergic rhinitis and reduced smoking. PLoS ONE, 16(6): e0253322. https://doi.org/10.1371/journal.pone.0253322    


Improve learning with peak performance techniques

Erik Peper, PhD and Vietta Wilson, PhD

Adapted from: Peper, E. & Wilson, V. (2021). Optimize the learning state: techniques and habits. Biofeedback, 9(2), 46-49. https://doi.org/10.5298/1081-5937-49-2-04

Long after the COVID-19 pandemic is over, online learning will continue to increase as better methodologies and strategies are developed to implement and integrate it into our lives. This post provides suggestions on how to enhance the learner’s ability to engage while online with the use of pre-performance routines or habits.

Facilitating online learning requires coordination of the teacher, technology, student, environment and the topic. Teachers can enhance engagement (Shoepe et al., 2020) online through different types of prompts: intellectual (associated with instructor interaction, academic challenge, active learning), organizational (associated with enriching academic experiences by directing students, selecting topics and summarizing or redirecting), and social (associated with supportive campus environments by encouraging social interaction, using informal language and affirming student comments).

The student can enhance the satisfaction and quality of the online experience by having a good self-regulated learning style. Learning is impacted by motivation (beliefs about themselves or the task, perceived value, etc.), and metacognition (ability to plan, set goals, monitor and regulate their behavior and evaluate their performance) (Greene & Azevedo, 2010; Mega et al., 2014). While critical for learning, it does not provide information on how students can maintain their optimized performance long term, which is increasingly necessary during the pandemic but will possibly be the model of education and therapy of the future.

Habit can enhance performance across a life span.

Habit is a behavioral tendency tied to a specific context, such as learning to brush one’s teeth while young and continuing through life (Fiorella, 2020). Habits are related to self-control processes that are associated with higher achievement (Hagger, 2019). Sport performance extensively values habit, typically called pre-performance routine, in creating an ongoing optimized state of performance (Lautenbach et al., 2015; Lidor & Mayan, 2005; Mesagno et al., 2015). Habits or pre-performance routines are formed by repeating a behavior tied to a specific context and with continued repetition, wherein the mental association between the context and the response are strengthened. This shifts from conscious awareness to subconscious behavior that is then cued by the environment. The majority of one’s daily actions and behaviors are the results of these habits.

Failure to create a self-regulated learning habit impedes long-term success of students. It does take significant time and reinforcement to create the automaticity of a real-life habit. Lally et al. (2010) tracked real world activities (physical activity, eating, drinking water) and found habit formation varied from 18-254 days with a mean of 66 days. There was wide variability in the creation of the habit and some individuals never reached the stage of automaticity. Interestingly, those who performed the behavior with greater consistency were more likely to develop a habit.

The COVID pandemic resulted in many people working at home, which interrupted many of the covert habit patterns by which they automatically performed their tasks. A number of students reported that everything is the same and that they are more easily distracted from doing the tasks. As one student reported:

After a while, it all seems the same. Sitting and looking at the screen while working, taking classes, entertaining, streaming videos and socializing. The longer I sit and watch screens, the more I tend to feel drained and passive, and the more challenging it is to be present, productive and pay attention.

By having rituals and habits trigger behavior, it is easier to initiate and perform tasks. Students can use the strategies developed for peak performance in sports to optimize their performances so that they can achieve their personal best (Wilson & Peper, 2011; Peper et al., 2021). These strategies include environmental cueing and personal cueing.

Environmental cueing

By taking charge of your environment and creating a unique environment for each task, it is possible to optimize performance specific for each task. After a while, we do not have to think to configure ourselves for the task. It is no different than the sequence before going to sleep: you brush your teeth and if you forget, it feels funny and you probably will get up to brush your teeth.

Previously, many people, without awareness, would configure and reinforce themselves for work by specific tasks such as commuting to go work, being at a specific worksite to perform the work, wearing specific clothing, etc. (Peper et al., 2021). Now there are few or no specific cues tied to working; it tends to be all the same and it is no wonder that people feel less energized and focused.

Many people forget that learning and recall are state-dependent to where the information was acquired. The Zoom environment where we work or attend class is the same environment where we socialize, game, watch videos, message, surf the net and participate in social media. For most, there has been no habit developed for the new reality of in-home learning. To do this, the environment must be set up so the habit state (focused, engaged) is consistently paired with environmental, emotional, social and kinesthetic cues. The environment needs to be reproducible in many locations, situations, and mental states as possible. As illustrated by one student’s report.

To cue myself to get ready for learning, I make my cappuccino play the same short piece of music, wear the same sweater, place my inspiring poster behind my screen, turn off all software notifications and place the cell phone out of visual range.

A similar concept is used in the treatment of insomnia by making the bedroom the only room to be associated with sleep or intimacy (Irish et al., 2017; Suni, 2021). All other activities, arguing with your partner, eating, watching television, checking email, texting, or social media are done at other locations. Given enough time, the cues in the bedroom become the conditioned triggers for sleep and pleasure.

Create different environments that are unique to each category of Zoom involvement (studying, working, socializing, entertaining).

Pre COVID, we usually wore different clothing for different events (work versus party) or visited different environments for different tasks (religious locations for worship; a bar, coffee shop, or restaurant for social gathering). The specific tasks in a specified location had conscious and subconscious cues that included people, lighting, odors, sound or even drinks and food. These stimuli become the classically conditioned cues to evoke the appropriate response associated with the task, just as Pavlov conditioned dogs to salivate when the bell sound was paired with the presentation of meat. Taking charge of the conditioning process at home may help many people to focus on their task as so many people now use their bedroom, kitchen or living room for Zoom work that is not always associated with learning or work. The following are suggestions to create working/learning environments.

  • Wear task-specific clothing just as you would have done going to work or school. When you plan to study or work, put on your work shirt. In time, the moment you put on the work shirt, you are cueing yourself to focus on studying/working. When finishing with working/studying, change your clothing.
  • If possible, maintain a specific location for learning/working. When attending classes or working, sit at your desk with the computer on top of the desk. For games or communication tasks, move to another location.
  • If you can’t change locations, arrange task-specific backgrounds for each category of Zoom tasks. Place a different background such as a poster or wall hanging behind the computer screen—one for studying/working, and another for entertainment. When finished with the specific Zoom event, take down the poster and change the background.
  • Keep the sound appropriate to the workstation area. Try to duplicate what is your best learning/working sound scape.

Personal Cueing

Learning to become aware of and in control of one’s personal self is equally or more important than setting up the environment with cues that foster attention and learning. Practicing getting the body/mind into the learning state can become a habit that will be available in many different learning situations across one’s lifespan.

  • Perform a specific ritual or pre-performance routine before beginning your task to create the learning/performing state. The ritual is a choreographed sequence of actions that gets you ready to perform. For example, some people like to relax before learning and find playing a specific song or doing some stretching before the session is helpful.  Others sit at the desk, turn off all notifications, take a deep breath then look up and state to themselves: “I am now looking forward to working/studying and learning,” “focus” (whatever it may be). For some, their energy level is low and doing quick arm and hand movements, slapping their thighs or face, or small fast jumps may bring them to a more optimal state. For many people smell and taste are the most powerful conditioners, and coffee improves their attention level. Test out an assortment of activities that get your body and mind at the performance level. Practice and modify as necessary.

Just as in sport, the most reliable method is to set up oneself for the learning/performance state, because a person has less control over the environment. For example, when I observed the Romanian rhythmic gymnasts team members practice their routine during the warmup before the international competition, they would act as if it was the actual competition. They stood at the mat preparing their body/mind state, then they would bow to the imaginary judge, wait for a signal to begin, and then perform their routine. On the other hand, most of the American rhythmic gymnasts would just do their practice routine. For the Romanian athletes, the competition was the same as their rehearsal practice. No wonder, the Romanian athletes were much more consistent in their performance. Additionally, ritual helps buffer against uncertainty and anxiety (Hobson et al., 2017).

  • Develop awareness of the body-mind state associated with optimum performance. This can be done by creating a ritual and an environment that evoke the optimum mental and emotional state for learning. As you configure yourself and your environment, explore how you physically feel when you are most focused and engaged. Identify what your posture, muscle tension, and body position feel like during these times, and identify what you are paying attention to. If your attention wanders, observe how you bring your attention back to the task. Does it help focus you to write summary notes or doodle? Do you flag important statements in your head and then visibly nod your head when you understand the concept? Or do you repeat an important cue word?  Find what you do when you are optimally functioning. Then try to reproduce that same state that can be triggered by a key word that tells you what to focus on (e.g., listen to teacher, look at slide, etc.).

In summary, by becoming aware of and controlling one’s environment and personal states that are associated with productive learning, and then practicing them until they become a routine or habit, one can maximize all learning opportunities. This blog presented a few tips, techniques and cues that may help one to maximize attention and increase performance and learning while online.

I noticed when I took the time to prepare and ready myself to be focused and be present during the class, I no longer had to actively work to resist distractions; I was focused in the moment and not worried about emails, other assignments, what to make for dinner, etc…

References

Findlay-Thompson, S. and Mombourquette, P. (2014). Evaluation of a Flipped Classroom in an Undergraduate Business Course. Business Education & Accreditation, v. 6 (1), 63-71.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2331035

Fiorella, L. (2020). The science of habit and its implications for student learning and ell-being. Educational Psychology Review, 32,603–625. https://doi.org/10.1007/s10648-020-09525-1

Greene, J. A., & Azevedo, R. (2010). The measurement of learners’ self-regulated cognitive and metacognitive processes while using computer-based learning environments. Educational Psychologist, 45(4), 203–209. https://doi.org/10.1080/00461520.2010.515935

Hagger, M. S. (2019). Habit and physical activity: Theoretical advances, practical implications, and agenda. Psychology of Sport and Exercise, 42, 118–129. https://doi.org/10.1016/j.psychsport.2018.12.007

Hobson, N. M., Bonk, D., & Inzlicht, M. (2017). Rituals decrease the neural response to performance failure. PeerJ5, e3363. https://doi.org/10.7717/peerj.3363

Irish, L. A., Kline, C. E., Gunn, H. E., Buysse, D. J., & Hall, M. H. (2015). The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep medicine reviews, 22, 23–36. https://doi.org/10.1016/j.smrv.2014.10.001

Lally, P., VanJaarsveld, C. H., Potts, H. W., & Wardle, J. (2010). How habits are formed: Modelling habit formation the real world. European Journal of Social Psychology, 40, 998–1009. https://doi.org/10.1002/ejsp.674

Lautenbach, F., Laborder, S. I., Lobinger, B. H., Mesagno, C. Achtzehn, S., & Arimond, F. (2015). Non automated pre-performance routine in tennis: An intervention study. Journal of Applied Sport Psychology, 27(2), 123-131. https://doi.org/10.1080/10413200.2014.957364

Lidor, R. & Mayan, Z. (2005). Can beginning learners benefit, from pre-performance routines when serving in volleyball? The Sport Psychologist 19(4), 243–263. https://doi.org/10.1123/tsp.19.4.343

Mega, C., Ronconi, L., & De Beni, R. (2014). What makes a good student? How emotions, self-regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 106(1), 121–131. https://doi.org/10.1037/a0033546

Mesagno, C., Hill, D. M., & Larkin, P. (2015). Examining the accuracy and in game performance effects between pre- and post-performance routines: A mixed methods study. Psychology of Sort and Exercise, 19, 85–94. https://doi.org/10.1016/j.psychsport.2015.03.005

Peper, E., Wilson, V., Martin, M., Rosegard, E., & Harvey, R. (2021). Avoid Zoom fatigue, be present and learn. NeuroRegulation, 7(1).

Shoepe, T. C., McManus, J. F., August, S. E., Mattos, N. L., Vollucci, T. C. & Sparks, P. R. (2020). Instructor prompts and student engagement in synchronous online nutrition classes. American Journal of Distance Education, 34, 194–210. https://doi.org/10.1080/08923647.2020.1726166

Suni, E. (2021). Sleep Hygiene. https://www.sleepfoundation.org/sleep-hygiene.

Wilson, V. E. & Peper, E. (2011). Athletes are different: factors that differentiate biofeedback/neurofeedback for sport versus clinical practice. Biofeedback, 39(1), 27–30. https://doi.org/10.5298/1081-5937-39.1.01


Are you encouraging your child to get into accidents or even blind when growing up?

Erik Peper and Meir Schneider

Adapted in part from: TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics by Erik Peper, Richard Harvey and Nancy Faass   

As a young child I laid on the couch and I read one book after the other.  Hours would pass as I was drawn into the stories. By the age of 12 I was so nearsighted that I had to wear glasses.  When my son started to learn to read, I asked him to look away at the far distance after reading a page. Even today at age 34, he continues this habit of looking away for a moment at the distance after reading or writing a page.  He is a voracious reader and a novelist of speculative fiction. His vision is perfect. –Erik Peper

How come people in preliterate, hunting and gatherer, and agricultural societies tend to have better vision and very low rates of nearsightedness (Cordain et al, 2003)? The same appear true for people today who spent much of their childhood outdoors as compared to those who predominantly stay indoors. On the other hand, how come 85% of teenagers in Singapore are myopic (neasighted) and how come in the United States myopia rate have increased for children from 25% in the 1970s to 42% in 2000s (Bressler, 2020; Min, 2019)? 

Why should you worry that your child may become nearsighted since it is easy correct with contacts or glasses?   Sadly, in numerous cases, children with compromised vision and who have difficulty reading the blackboard may be labeled disruptive or having learning disability. The vision problems can only be corrected if the parents are aware of the vision problem (see https://www.covd.org/page/symptoms for symptoms that may be related to vision problems). In addition, glasses may be stigmatizing and  children may not want to wear glasses because of vanity or the fear of being bullied.

The recent epidemic of near sightedness is paritally a result of disrespecting our evolutionary survival patterns that allowed us to survive and thrive. Throughout human history, people continuously alternated by looking nearby and at the distance.  When looking up close, the extraocular muscles contract to converge the eyes and the ciliary muscles around the lens contract to increase the curvature of the lens so that the scene is in focus on the retina — this muscle tension creates near visual stress.

The shift from alternating between far and near vision to predominantly near vision and immobility

Figure 2. The traditional culture of Hdzabe men in Tanzania returning from a hunt. Notice how upright they walk and look at the far distance as compared to young people today who slouch and look predominantly  at nearby screens.

Experience the effect of near visual stress. 

Bring your arm in front of you and point your thumb up.  Look at your thumb on the stretched out arm.  Keep focusing on the thumb and slow bring the thumb four inches from your nose.  Keep focusing on the thumb for a half minute.  Drop the arm to the side, and look outside at the far distance.

What did you experience? Almost everyone reports feeling tension in the eyes and a sense of pressure inside around and behind their eyes.  When looking at the distance, the tension slowly dissipates.  For some the tension is released immediately while for others it may take many minutes before the tension disappears especially if one is older. Many adults experience that after working at the computer, their distant vision is more fuzzy and that it takes a while to return to normal clarity.

When the eyes focus at the distance, the ciliary muscles around lens relaxes so that the lens can flatten and the extra ocular muscles relax so that the eyes can diverge and objects in the distance are in focus.  Healthy vision is the alternation between near and far focus– an automatic process by which the muscles of the eyes tightening and relax/regenerate.

Use develops structure and structure limits use

If we predominantly look at nearby surfaces, we increase near visual stress and the risk of developing myopia. As children grow, the use of their eyes will change the shape of the eyeball so that the muscles will have to contract less to keep the visual object into focus.  If the eyes predominantly look at near objects, books, cellphones, tablets, toys, and walls in a room where there is little opportunity to look at the far distance, the eye ball will elongate and the child will more likely become near sighted. Over the last thirty year and escalated during COVID’s reside-in-place policies, children spent more and more time indoors while looking at screens and nearby walls in their rooms. Predominantly focusing on nearby objects starts even earlier as parents provide screens to baby and toddlers to distract and entertain them. The constant near vision remodels the shape of eye and the child will  likely develop near sightedness.  

Health risks of sightedness and focusing predominantly upon nearby objects

  • Increased risk of get into an accident as we have reduced peripheral vision.  In earlier times if you were walking in jungle, you would not survive without being aware of your peripheral vision. Any small visual change could indicate the possible presence food or predator, friend or foe.  Now we focus predominantly centrally and are less aware of our periphery. Observe how your peripheral awareness decreases when you bring your nose to the screen to see more clearly.  When outside and focusing close up the risk of accidents (tripping, being hit by cars, bumping into people and objects) significantly increases as shown in figure 3 and illustrated in the video clip.

Pedestrian accidents (head forward with loss of peripheral vision)

Figure 3. Injuries caused by cell phone use per year since the introduction of the smartphone (graphic from Peper, Harvey and Faass,2020; data source: Povolatskly et al., 2020).

Source: https://media.giphy.com/media/308cQ2vXnA5X8Ou3jo/giphy.mp4
  • Myopia increases the risk of eye disorder. The risk for glaucoma, one the leading causes of blindness, is doubled (Susanna, De Moraes, Cioffi, & Ritch, R. 2015). The excessive tension around the eyes and ciliary muscles around the lens can interfere with the outflow of the excess fluids of the aqueous humour through the schlemm canal and may compromise the production of the aqueous humour fluid. These canals are complex vascular structures that maintains fluid pressure balance within the anterior segment of the eye. When the normal outflow is hindered it would contribute to elevated intraocular pressure and create high tension glaucoma (Andrés-Guerrero, García-Feijoo,  & Konstas, 2017).  Myopia also increases the risk for retinal detachment and tears, macular degeneration and cataract. (Williams & Hammond, 2019).

By learning to relax the muscles around the lens, eye and face and sensing a feeling of soft eyes, the restriction around the schlemm canals is reduced and the fluids can drain out easier and is one possible approach to reverse glaucoma (Dada et al., 2018; Peper, Pelletier & Tandy, 1979).

WHAT CAN YOU DO?

The solutions are remarkable simple. Respect your evolutionary background and allow your eyes to spontaneously alternate between looking at near and far objects while being upright (Schneider, 2016; Peper, 2021; Peper, Harvey & Faass, 2020).

For yourself and your child

  • Let children play outside so that they automatically look far and near.
  • When teaching children to read have them look at the distance at the end of every paragraph or page to relax the eyes.
  • Limit screen time and alternate with outdoor activities
  • Every 15 to 20 minutes take a vision break when reading or watching screens.  Get up, wiggle around, move your neck and shoulders, and look out the window at the far distance.
  • When looking at digital screens, look away every few minutes. As you look away, close your eyes for a moment and as you  are exhaling gently open your eyes.
  • Practice palming and relaxing the eyes. For detailed guidance and instruction see the YouTube video by Meir Schneider.

Create healthy eye programs in schools and work

  • Arrange 30 minute lesson plans and in between each lesson plan take a vision and movement breaks. Have children get up from their desks and move around.  If possible have them look out the window or go outside and describe the furthest object they can see such as the shape of clouds, roof line or details of the top of trees.
  • Teach young children as they are learning reading and math to look away at the distance after reading a paragraph or finishing a math problem.
  • Teach palming for children.
  • During recess have students play games that integrate coordination with vision such as ball games.
  • Episodically, have students close their eyes, breathe diaphragmatically and then as they exhale slowly open their eyes and look for a moment at the world with sleepy/dreamy eyes.
  • Whenever using screen use every opportunity to look away at the distance and for a moment close your eyes and relax your neck and shoulders.

BOOKS TO OPTIMIZE VISION AND TRANSFORM TECHSTRESS INTO TECHHEALTH

Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement by Meir Schneider.

TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics by Erik Peper, Richard Harvey and Nancy Faass   

YOUTUBE PRESENTATION, Transforming Tech Stress into Tech Health.

ADDITIONAL BLOGS THAT FOCUS ON RESOLVING EYES STREAN AND TECHSTRESS

REFERENCES

Andrés-Guerrero, V., García-Feijoo, J., & Konstas, A.G. (2017). Targeting Schlemm’s Canal in the Medical Therapy of Glaucoma: Current and Future Considerations. Adv Ther, 34(5), 1049-1069.

Bressler, N.M. (2020). Reducing the Progression of Myopia. JAMA, 324(6), 558–559.

Chen, S. J., Lu, P., Zhang, W. F., & Lu, J. H. (2012). High myopia as a risk factor in primary open angle glaucoma. International journal of ophthalmology5(6), 750–753.

Cordain, L.,  Eaton, S.B., Miller, J. B., Lindeberg, S., & Jensen, C. (2003). An evolutionary analysis of the aetiology and pathogenesis of juvenile‐onset myopia. Acta Ophthalmologica Scandinavica, 80(2), 125-135.

Dada, T., Mittal, D., Mohanty, K., Faiq, M.A., Bhat, M.A., Yadav, R.K., Sihota, R., Sidhu, T,, Velpandian, T., Kalaivani, M., Pandey, R.M., Gao, Y., Sabel, B,A., & Dada, R. (2018). Mindfulness Meditation Reduces Intraocular Pressure, Lowers Stress Biomarkers and Modulates Gene Expression in Glaucoma: A Randomized Controlled Trial. J Glaucoma, 27(12), 1061-1067.

Hansraj, K. K. (2014). Assessment of stresses in the cervical spine caused by posture and position of the head. Surgical Technology International, 25, 277–279.

Harvey, R., Peper, E., Booiman, A., Heredia Cedillo, A., & Villagomez, E. (2018). The effect of head and neck position on head rotation, cervical muscle tension and symptoms. Biofeedback. 46(3), 65–71.

Min, L.P. (2019). Speech by Dr. Lam Pin Min, Senior Minister of State for Health, Singapore, at the opening of the Sangapore National Eye Centre’s Myopia Center, 16 August, 2019.

Peper, E. (2021). Resolve eyestrain and screen fatigue. Well Being Journal, 30(1), 24-28.

Peper, E., Booiman, A., Lin, I.M., & Harvey, R. (2016). Increase strength and mood with posture. Biofeedback. 44(2), 66–72.

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Lin, I-M., Harvey, R., & Perez, J. (2017). How posture affects memory recall and mood.  Biofeedback.45 (2), 36-41.

Peper E., Pelletier K.R., Tandy B. (1979) Biofeedback Training: Holistic and Transpersonal Frontiers. In: Peper E., Ancoli S., Quinn M. (eds) Mind/Body Integration. Springer, Boston, MA.

Povolotskiy, R., Gupta, N., Leverant, A. B., Kandinov, A., & Paskhover, B. (2020). Head and Neck Injuries Associated With Cell Phone Use. JAMA Otolaryngology–Head & Neck Surgery, 146(2), 122-127.

Schneider, M. (2016). Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement. Berkeley, CA: North Atlantic Books.

Schneider, M. (2019). YouTube video Free Webinar by Meir Schneider: May 6, 2019.

Susanna, R., Jr, De Moraes, C. G., Cioffi, G. A., & Ritch, R. (2015). Why Do People (Still) Go Blind from Glaucoma?. Translational vision science & technology4(2), 1.

Williams, K., & Hammond, C. (2019). High myopia and its risks. Community eye health32(105), 5–6.


Ways to reduce TechStress

We are excited about our book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, that was published August 25, 2020.

authors Erik and Rick1

Evolution shapes behavior — and as a species, we’ve evolved to be drawn to the instant gratification, constant connectivity, and the shiny lights, beeps, and chimes of our ever-present devices. In earlier eras, these hardwired evolutionary patterns may have set us up for success, but today they confuse our instincts, leaving us vulnerable and stressed out from fractured attention, missed sleep, skipped meals, aches, pains, and exhaustion and often addicted to our digital devices.

Tech Stress offers real, practical tools to avoid evolutionary pitfalls programmed into modern technology that trip us up. You will find a range of effective strategies and best practices to individualize your workspace, reduce physical strain, prevent sore muscles, combat brain drain, and correct poor posture. The book also provides fresh insights on reducing psychological stress on the job, including ways to improve communication with coworkers and family.

Although you will have to wait to have the book delivered to your home, you can already begin to implement ways to reduce physical discomfort, zoom/screen fatigue and exhaustion. Have a look the blogs below.

How evolution shapes behavior 

Evolutionary traps: How screens, digital notifications and gaming software exploits fundamental survival mechanisms 

How to optimize ergonomics

Reduce TechStress at Home

Cartoon ergonomics for working at the computer and laptop 

Hot to prevent and reduce neck and shoulder discomfort

Why do I have neck and shoulder discomfort at the computer? 

Relieve and prevent neck stiffness and pain 

How to prevent screen fatigue and eye discomfort

Resolve Eyestrain and Screen Fatigue 

How to improve posture and prevent slouching

“Don’t slouch!” Improve health with posture feedback 

How to improve breathing and reduce stress

Anxiety, lightheadedness, palpitations, prodromal migraine symptoms?  Breathing to the rescue! 

How to protect yourself from EMF

Cell phone radio frequency radiation increases cancer risk

book cover

Available from: https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/


Evolutionary traps: How screens, digital notifications and gaming software exploits fundamental survival mechanisms

Erik Peper and Richard Harvey

If athletes, psychologists, business executives, actors, students, politicians, job seekers and others use mental and actual rehearsal to improve their performances, would repeated watching of violent and aggressive streaming-videos, or playing hours and hours of first-shooter computer games be a form of rehearsal for aggressive behavior?

Arguably, mental and actual rehearsal is positively associated with improving health, such as preparing for an athletic competition or an academic exam and is negatively associated with health when playing aggressive, violent first-person shooter video games, or continuously watching aggressive or violent content on a variety of streaming platforms. Rehearsal–whether physical or in our imagination–impacts our health and performance in school, sports, therapy, politics, business and health.  Choose to rehearse activities that improve health and well-being.

  • Athletes use mental rehearsal to improve sports performance (Peper & Aita, 2017; Schenk & Miltenberger, 2019).
  • Surgeons use mental rehearsal and actual practice to improve performance (Spiotta et al., 2018).
  • Psychologists use cognitive behavioral therapy (CBT) rehearsal techniques to reduce anxiety and depression (Dobson & Dobson, 2018; Yamada et al, 2018; Cook, Mostazir, & Watkins, 2019)
  • Successful business executives rehearse presentations before a staff meeting (Couch & Citrin, 2018).
  • Actors and performers spend hours and days rehearsing their roles so that they portray and act it realistically during the performance .
  • Students take practice exams so that they will perform better on the actual exam.
  • Politicians, lawyers, and many others rehearse and practice being able to answer unexpected questions.
  • Job seekers rehearse elevator pitches so that they transmit in a few words what is important

Mechanisms of rehearsal

Both mental and physical rehearsal strengthens neurochemical connections in the brain so that the rehearsed behaviors become more automated, fluid and unconscious.  There is a saying in neurosciences,  “Neurons that fire together wire together.” –the more you rehearse a task, the more those specific neurological pathways are strengthened, leading to automatic and efficient outcomes.

We now spend hours a day being exposed to digital displays on our phones, computers, gaming consoles and other digital devices, immersing ourselves in content reflecting life promoting, positive behavior and sometimes violent, negative behavior. Children and adults spend much of their free time looking at screens, texting, playing computer games, updating social media sites with moment by moment accounts of sometimes trivial activities, or going down the rabbit hole by following one hyperlinks after another.  As we do this, we are unaware how much time has frittered away without actually doing anything productive. Below are some recent estimates of ‘daily active user’ minutes per day that uses a screen.

  • Facebook about an hour per day
  • Instagram just under an hour per day
  • Texting about 45 minutes per day
  • Internet browsing, about 45 minutes per day
  • Snapchat, about 30 minutes per day
  • Twitter, about 25 minutes per day

Adolescents interact with media for over 40 hours per week, or around 6 hours per day!

In spending much of our time with the screens, we rehearse a variety of physical body postures as well as a variety of cognitive and behavioral states that impact our physical, mental, emotional and social health.  Many researchers have lamented the loss of some social skills that develop during physical face-to-face contact.  The colloquial phrase, Use it or lose it, raises several questions about what is being lost when we spend so much of our waking time interacting with screens instead actually with other people?

It is almost impossible not to be distracted by the digital screen.  The powerful audiovisual formats override our desire to do something different that some of us become enslaved to watching streaming videos, playing computer games or texting. Moreover, the ongoing visual and auditory notifications from our apps interrupts and/or capture our attention. Why is it difficult to turn away from visual or auditory stimuli?  The answer has roots in our survival.

To attend to stimuli is an automatic evolutionary survival response. If we did not attend, we would not survive–Is the slight movement to the far right, just at the edge of our peripheral vision, a predator ready to attack?

tigera

Tiger in Kanha National Park, Madhya Pradesh, India 

Each time a stimulus occurs, we need to check it out to see if it is friend or foe, safety or danger. The response is so automatic that we are unaware that we have reacted until after we have responded. We all have experienced this. When a computer screen or cellphone screen is held by the stranger next to us, we automatically look at their screen and we may even begin to read their emails. Although we know that peering at some else’s screen is not proper, we are still feel compelled to do it!

Similarly, screens displaying computer games and other media can capture or hijack our attention by the rapid scene changes, primarily because the content is programmed so we receive intermittent rewards for our responses.  For example, the sound or visual notifications from our apps, cellphone messages, or social media trigger an impulse to scan the environment for information that may be critical to our survival. Even without receiving notifications, we may anticipate or project that there may be new information on our social media accounts, and sometimes we become disappointed when the interval between notifications is long.  One student talking to another might say: “Don’t worry, they’ll respond; It’s only been 30 seconds.” Anticipating responses from the media can interrupt what we are otherwise doing.  For example, rather than finish our work, we check for updates on social media, even though we probably know that there are no new important messages to which we would have to respond right away.

The mechanisms that help us survive by scanning our environment for predators may  now become an evolutionary trap and is exploited  to capture as many eyeballs as possible to increase market share, advertising revenue, and corporate bottom line.

We usually blame the individual for lack of self-control instead of blaming the designers of the digital apps, games and displays who have exploited this biological survival mechanism.  We expect that children have voluntary control as their brains are developing–but how could they not react to the stimuli that for thousands of generations, helped them to survive. It is similar to asking children to have control and say “No” to fast foods and sweets. The foods that were previously necessary for survival represented by moderate amounts of ‘salt, fat, acid, heat and sweet’ tastes are often found in excess in our modern commercial or packaged ‘fast food nation’ making it likely that people may fall into an evolutionary trap related to what they eat.

Presently, high levels of exposure to violent and aggressive streaming videos and computer games can be harmful as they provide the practice to rehearse violence, killing and aggression mentally. It would be too strong a statement to assert that everyone who plays violent video games will become delinquent, criminal or homicidal in an extreme form of aggression.  According to the American Psychological Association Task Force on Video Game Violence in 2017, it may be asserted that high frequency, long duration, high intensity interactions with violent video games or similar media content is highly associated with angry and aggressive thoughts, desensitization to violence, and decreases in empathy or helping others (Calvert et al., 2017).  Some forms of social media interactions also lead to a form of social isolation,  loneliness (phoneliness) (Christodoulou, G., Majmundar, A., Chou, C-P, & Pentz, M.A., 2020; Kardaras, 2017).   Digital content requires the individual to respond to the digital stimuli, without being aware of the many verbal and nonverbal communication cues (facial expressions, gestures, tone of voice, eye contact, body language, posture, touch, etc) that are part of social communication (Remland, 2016). It is no wonder that more and more adolescents experience anxiety, depression, loneliness, and attention deficit disorders with a constant ‘digital diet’ that some have suggested include not only media, but junk food as well .

The negative impact of watching digital media was prescient by Jerry Mander, one of the leading visionaries of the 20th century, in his 1978 book, Four Arguments for the Elimination of Television, as well as by Joseph C. Pearce, author of books on human development and child development, in his 1993 book, Evolution’s End.

More recently, two superb books detail the harm that the digital revolution has brought, along with recommended strategies for how to use modern technologies wisely and live successfully in an e-world.  We are not saying to avoid the beneficial parts of the digital age.   We are saying to be aware how some material and digital platforms prey upon our evolutionary survival mechanisms.  Unfortunately, most people —especially children– have not evolved skills to counter the negative impacts of some types of media exposure.  It may take parental control and societal policies to mitigate the damage and enhance the benefits of the digital age. We highly recommend the following two books.

Glow Kids by Nicholas Kardaras, PhD describes the impact of excessive texting and computer gaming as well as strategies how to use digital media wisely

Deep Work by Cal Newport, PhD describes the impact of constant interruptions and offers rules for focused success in a distracted world.

book covers

References:

Calvert, S. L., Appelbaum, M., Dodge, K. A., Graham, S., Nagayama Hall, G. C., Hamby, S., Fasig-Caldwell, L. G., Citkowicz, M., Galloway, D. P., & Hedges, L. V. (2017). The American Psychological Association Task Force assessment of violent video games: Science in the service of public interest. American Psychologist, 72(2), 126–143. https://doi.org/10.1037/a0040413

Christodoulou, G., Majmundar, A., Chou, C-P, & Pentz, M.A. (2020). Anhedonia, screen time, and substance use in early adolescents: A longitudinal mediation analysis. Journal of Adolescence, 78, 24-32.

Cook L, Mostazir M, Watkins E, (2019). Reducing Stress and Preventing Depression (RESPOND): Randomized Controlled Trial of Web-Based Rumination-Focused Cognitive Behavioral Therapy for High-Ruminating University Students. J Med Internet Res, 21(5):e11349

Couch, M. A., & Citrin, R. (2018). Retooling leadership development. Strategic HR Review, 17(6), 275-281.

Dobson, D. & Dobson, K.S. (2018). Evidence-Based Practice of Cognitive-Behavioral Therapy, 2nd ed. New York: Guilford Press.

Kardaras, N. (2017).  Glow Kids, New York: St. Martin’s Griffin

Mander, J. (1978).  Four arguments for the Elimination of Television. New York: William Morrow Paperbacks.

Newport, C. (2019). Deep Work. New York: Grand Central Publishing

Pearce, J. C. (1993). Evolution’s End. New York: Harper One

Peper, E. & Aita, J. (2017). Winning the Gold in Weightlifting Using Biofeedback, Imagery and Cognitive Change. Biofeedback, 45(4), 77-82

Remland, M.S. (2016). Nonverbal Communication in Everyday Life, 4th ed.  London: Sage Publications Ltd.

Schenk, M. & Miltenberger, R. (2019). A review of behavioral interventions to enhance sports performance. Behavior Interventions, 33(2), 248-279.

Spiotta, A.M, Buchholz, A.L., Pierce, A. K., Dahlkoetter, J., & Armonda, R. (2018).  The Neurosurgeon as a High-Performance Athlete: Parallels and Lessons Learned from Sports Psychology. World Neurosurgery, 120, e188-e193

Yamada, F., Hiramatsu, Y., Murata, T., Seki, Y., Yokoo, M., Noguchi, R., … & Shimizu, E. (2018). Exploratory study of imagery rescripting without focusing on early traumatic memories for major depressive disorder. Psychology and Psychotherapy: Theory, Research and Practice91(3), 345-362.

 

 


Do better in math: Don’t slouch-Be tall!

“When I saw the exam questions, I blanked out and slouched in defeat. Then I shifted to an erect/tall position and took a diaphragmatic breath. All of a sudden I remembered the answer.”                                                                                                                        College student

Anticipating that math is difficult, experiencing test anxiety, blanking out on exams, or being scared when asked to give class presentation are common experiences of many students.  Their thoughts include, “I am not good enough,“What will the other students think,”  “I am embarrassed and can’t remember what to say,” or “I only thought of the correct answer after it was all over.” Many students report some test anxiety: 32% report severe test anxiety, fear of math and blanking out on exams while less than 10 percent report minimal test anxiety, fear of math and blanking out on exams.

When students anticipate that they will perform poorly on an exam or class presentation, they tend to sit in a slouched or collapsed position, coincident with feelings of powerlessness, hopelessness and defeat. This posture not only communicates to others that they are powerless and defeated, it also decreases their self-esteem, mood and cognitive performance.  In previous research, Tsai et al (2016) and Peper et al (2017) observed that when participants sat in a slouched posture, they could access hopeless, helpless, powerless and defeated memories much more easily than when they sat in the upright/erect position.  In the upright position it was much easier to access positive and empowering memories. For numerous participants they also experienced being captured and flooded by emotions associated with defeat and hopelessness when they slouched. These feelings and memories associated with a slouched posture may affect how we feel and perform. Nair et al (2015) found that adopting an upright seated posture in the face of stress can maintain self-esteem, reduce negative mood, and increase positive mood as compared to a slumped posture. Furthermore, sitting upright increases rate of speech and reduces self-focus.” Posture may also affect our hormone levels. Harvard Social Psychologist Amy Cuddy has reported that sitting in a slouched posture (powerless position) decreased testosterone (the hormone associated dominance and assertiveness) and increased cortisol (the hormone associated with stress) and performance on a stressor test (Cuddy, 2012; Carney et al, 2010). 

This blog points out how posture significantly impacts math performance especially for students who have test anxiety, are fearful of math, and blank out on exams and is adapted from our published research article, Peper, E., Harvey, R., Mason, L., & Lin, I-M. (2018). Do better in math: How your body posture may change stereotype threat response. NeuroRegulation, 5(2), 67-74 

In our study 125 university students participated. Half the students sat in an erect position while the other half sat in a slouched position and were asked to mentally subtract 7 serially from 964 for 30 seconds. They then reversed the positions before repeating the math subtraction task beginning at 834. They rated the math task difficulty on a scale from 0 (none) to 10 (extreme).

Fig 1 Slouch collapse positionFigure 1. Sitting in a collapsed position and upright position (photo from: http://news.sfsu.edu/news-story/good-posture-important-physical-and-mental-health)

The students rated the mental math significantly more difficult while sitting slouched than while sitting erect as shown in Figure 2.

Fig 2 difficulty in math by positionFigure 2. The subjective rating of difficulty in performing the serial 7 math subtraction when sitting in a collapsed or upright position.

For the students with the lowest 30% test anxiety, math difficulty and blanking out scores, there was no significant difference between slouched and erect positions in mental math performance.  More importantly, students with the highest 30% test anxiety, math difficulty and blanking out scores rated the math task significantly more difficult and some could not do it at all and blanked out in the slouched position as compared to the erect position as shown in Figure 3.

Fig 3 30 percent math performanceFigure 3. Effect of posture on math performance for students with test anxiety, math difficulty and blanking out.

 The students with the highest test anxiety, math difficulty and blanking out scores also reported significantly more somatic symptoms as compared with those with the lowest scores as shown in Figure 4.

Fig 4 SymptomsFigure 4. Self-reported symptoms associated with the highest and lowest 30% of summed test anxiety, math difficulty and blanking out.

Discussion

Posture affects mental math and inhibit abstract thinking. By incorporating posture changes clinicians and teachers may help students improve performance.  The slouched position was associated with increased difficulty in performing a math subtraction task for 15 seconds, especially for students reporting higher test anxiety, math difficulty and blanking out on exams. In contrast, slouched position had no significant effect on students who reported that they were not stressed about performance. For participants who report higher test anxiety, math difficulty and blanking out they also reported significant increase in breathing difficulty, neck and shoulder tension, headaches, depression and anxiety. Most likely, the students attribute physiological reactions such as increased heart rate and breathing changes negatively, which amplifies their negative self-perception and exacerbates their anxiety symptoms which then may inhibit their cognitive ability to perform on math tasks.

The slouched position combined with the somatic symptoms activate are part of the a “defense reaction.” The slouch posture evokes a classically conditioned response to protect oneself under conditions of perceived physical threat. The activation of this defense pattern is associated with reduced levels of abstract thinking and frontal cortical deactivation as observed in this study.  This biological defense response is triggered when the person expects the situation to be ‘dangerous’ and include conditions of social-evaluative threat. By changing posture to an erect/upright posture appears to inhibit the defense reaction; thus, the person may perform better on cognitive tasks. 

Summary

Head-upright/erect postures may make it easier to access ‘positive and empowering’ thoughts and memories, thereby helping students, especially those who are anxious or fearful of math and blank-out during exams,   Anxious students who also slouch may benefit from training with a posture feedback  devices such as the UpRight Go™[1].  We recommend that students use posture feedback to become aware of the situations that are associated with slouching, such as ergonomic factors (looking down at the screen), being tired, or having depressive thoughts or feeling of powerless and defeat. 

The moment students experience the feedback that they are slouching, they become aware and have the option to shift to an upright posture and perform interventions to counter the factors that caused the slouching.  These interventions included ergonomic changes of their computer or laptop, transforming self-critical thoughts to empowering thoughts, or taking a break or performing movements. When students practice these interventions for four weeks, they report an increase of confidence, decrease in stress levels and an improvement in health and performance (Colombo et al, 2017; Harvey et al, in press). Equally important is to teach the participants self-regulation strategies  such as slower breathing, heart rate variability training, and muscle relaxation to reduce symptoms. The training needs to be generalized and practiced at home, school or work.

We recommend that students guide themselves through the posture positions as described in this research while performing mental math to experience how posture impacts performance. This experiential practice may increase motivation to be tall since the participant can now have a choice based upon self-experience.

Take home message echoes what your mother said, “Don’t slouch. Sit up tall!” 

  • If you feel secure and safe, posture has little to no effect on performance–you can be collapsed or slouched.
  • If you are anxious and fearful, sitting tall/erect may improve your performance.
  • If you want to become aware when you slouch, posture feedback from a wearable posture feedback device such as an UpRight Go can provide vibration feedback each time you slouch. The feedback can be the reminder to sit tall and change your thoughts.
  • If you automatically slouch while working at the computer or sitting in chair, change your furniture so that you sit in an upright position while studying or watching digital devices.
  • If you experience significant somatic symptoms (e.g., headaches, breathing difficulty, neck and shoulder tension, or depression and anxiety) learn self-regulation skills such as slower diaphragmatic breathing and heartrate variability training in conjunction with transforming negative self-talk to positive self-talk to improve performance.

Changing posture may also impact other areas of one’s life besides improving math performance as illustrated by the report from a mother of ten-year old boy.  

”At the moment I am trying to be aware of the situation in front of me rather that reacting to it. For example, yesterday my son who is 10 had a bad mood and I did not know what had happened, and he at first refused to tell me. Because I was aware of the posture information I could help him open up by making him change his posture without knowing. He became more open and told me what had happened earlier and I could help him move forward.”

REFERENCES

Carney, D. R., Cuddy, A. J., & Yap, A. J. (2010). Power posing brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychological Science, 21(10), 1363–1368.

Colombo, S., Joy, M., Mason, L., Peper, E., Harvey, R., & Booiman, A.C. (2017). Posture Change Feedback Training and its Effect on Health. Poster presented at the 48th Annual Meeting of the Association for Applied Psychophysiology and Biofeedback, Chicago, IL March, 2017. Abstract published in Applied Psychophysiology and Biofeedback.42(2), 147.

Cuddy, A. (2012). Your body language shapes who you are. Technology, Entertainment, and Design (TED) Talk, available at:  www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are

Harvey, R., Mason, L., Joy, M., & Peper, E. (in press). Effect of Posture Feedback Training on Health, Applied Psychophysiology and Biofeedback. 

Nair, S., Sagar, M., Sollers, III, J., Consedine, N. & Broadbent, E.  (2015). Do Slumped and Upright Postures Affect Stress Responses? A Randomized Trial. Health Psychology, 34(6), 632–641.

Peper, E., Harvey, R., Mason, L., & Lin, I-M. (2018). Do better in math: How your body posture may change stereotype threat response. NeuroRegulation, 5(2), 67-74

Peper, E., Lin, I-M., Harvey, R., & Perez, J. (2017). How posture affects memory recall and mood.  Biofeedback.45 (2), 36-41.

Tsai, H. Y., Peper, E., & Lin, I. M.* (2016). EEG patterns under positive/negative body postures and emotion recall tasks. NeuroRegulation, 3(1), 23-27.

[1] UpRight Go is produced by Upright Technologies. LTD, Ha’atzmaut 56, Yehud 5630425, Israel  https://www.uprightpose.com

 


Reduce the risk for ADHD: Breastfeed your baby

breast feeding

In a superb meta-analysis, Professor Ping-Tao Tseng and colleagues (2018), found that breast feeding reduces the risk of ADHD. The longer the breast feeding was the sole food source, the lower the risk of ADHD. Read the complete article, Material breastfeeding and attention-deficit/hyperactivity disorders in children: a meta-analysis.

One should not be surprised by this finding– breastmilk has been the primary food source for babies since the dawn of human evolution.  To accept that formula is as good as breast milk is foolish. Breast milk provides the essential nutrients for infants’ growth, contains the appropriate fatty acids for brain development, and the bioactive factors to protect the baby against disease (Oddy, 2001). It modulates the sleep wake cycle since the evening breast milk contains nucleotides that promote baby’s sleep which are different from morning breast milk that promotes wakefulness (Sanchez et al, 2009). In addition, it reduces the risk of asthma, eczema, and allergic rhinitis (Lodge et al, 2015). Despite the commercial advertisements that formal is as good as breast milk, it contributes to neural malnutrition. That babies do develop with formula is a remarkable demonstration of human adaptability.

Food is our building blocks. When we consume low quality foods, we may increase the risk of developing illness.  This is analogous to using superb building materials when constructing a house as the building is more resilient and may better survive the assault from the environment such as termites, storms, or earthquakes than if built from inferior materials.

People, businesses and government have a choice.  We can pay the upfront costs to support women to breastfeed their babies for a year by providing paid leave from their jobs or pay much higher long term costs to remediate and treat the deficiencies induced by not supporting breast feeding.

If you are concerned about your child’s future health and want to reduce the risk of ADHD, asthma, eczema, or allergic rhinitis there is only one recommendation: Breast feed your baby for a long time period.

References

Lodge, C., Tan, D.J., Lau, M.X.., Dai, X., Tham, R., Lowe, A.J., Bowatte, G., Allen, K.J. & Dharmage,  S.C. (2015). Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta Paediatrica, 104(467), 38-53.

Oddy, W.H. (2001). Breastfeeding protects against illness and infection in infants and children: a review of the evidence. Breastfeeding Review, 9(2), 11-18.

Sanchez, C.L., Cubero, J., Sanchez, J., Chanclon, B., Rivero, M., Rodriguez, A.B., & Barriga, C. (2009). The possible role of human milk nucleotides as sleep inducers. Nutritional Neuroscience, 12(1), 2-9.

Tseng, P-T., Yen, C-F., Chen, Y-W., Chen, Y-W, Stubbs, B., Carvalho, A.F., Whiteley, P., Chu, C-S…. (2018). Maternal breastfeeding and attention-deficit/hyperactivity disorder in children: a meta-analysis. European Child & Adolescent Psychiatry,