Exploiting evolutionary traps: Netflix’s new movie, The Social Dilemma

Addicted to the screen (Photo from the Netflix’s docudrama, The Social Dilemma)

Apple founder Steve Jobs didn’t let his kids use the iPad, or really any product their dad invented, As Steve Jobs stated, “They haven’t used it,” “We limit how much technology our kids use at home.” (Bilton, 2014).

In 2007, Bill Gates, the former CEO of Microsoft, implemented a cap on screen time when his daughter started developing an unhealthy attachment to a video game. He also didn’t let his kids get cell phones until they turned 14 (Akhtar & Ward, 2020).

What is it that these two titans of the tech revolution and the many Silicon Valley insiders know and discuss in the  Netflix docudrama, The Social Dilemma?

They recognized the harm that occurs when monetary incentives are the singular driver to optimize the hardware (the look and feel of the cellphone)  and much more important  the software algorithms to capture the attention of the user.  It is interesting that there are only two industries that label their customers as users, illegal drugs and software (Kalsim 2020).

The longer a user is captured by the screen, the more the user responds to notifications, the more the user clicks to other sites, the more money the corporation earns from its advertisers. The algorithms continuously optimize what the user sees and hears so that they stay captured. Thus, the algorithms are designed to exploit the evolutionary response patterns that allowed us to survive and thrive. Evolutionary traps occur when adaptive behaviors that were once successful become maladaptive or even harmful. When this occurs, cues that were protective or beneficial can lead to reduced health and fitness (Peper, Harvey & Faass 2020).

Companies exploit evolutionary traps for the purpose of improving profits. This potentially constitutes a major health risk for humanity.  As quoted from the The Social Dilemma, “Your attention is the product that is being sold to advertisers”

Google, Facebook, Twitter, Instagram, Pinterest, and others are designed to be highly addictive and incorporate some of the following evolutionary traps (Peper, Harvey & Faass, 2020):

  • We are wired to see artificial images and to hear reproduced sounds as real. The brain does not discriminate between actual and visual-auditory images that are artificial, which explains one aspect of our attraction to our phones, to binge-watching, and to gaming.
  • We are wired to react to any stimuli that suggests potential danger or the presence of game animals. Whether the stimuli is auditory, visual, tactile, or kinesthetic, it triggers excessive arousal. This makes us vulnerable to screen addiction, because our biology compels us to respond.
  • We are wired to attend to social information about power within our group, a major factor in social media addiction.

If you concerned about false news, political polarization, radicalization, increased anxiety, depression, suicides  and mental health in people, watch Netflix, The Social Dilemma. What makes this film so powerful is that it is told by the same people who were the designers, developers, and programmers for the different social media companies.  

From: https://www.netflix.com/title/81254224

References:

Akhtar, A. & Ward, M. (2020, May 15). Bill Gates and Steve Jobs raised their kids with limited tech — and it should have been a red flag about our own smartphone use. Business Insider.

Bilton, N. (Sept 10, 2014). Steve Jobs was a low-tech parent. New York Times.

Kalsi, H. (2020, September 15). “It’s 2.7 billion Truman Shows”: Why ‘The Social Dilemma’ is a must-watch. Lifestle Asia Culture.

Peper, E. & Harvey, R. (2020, January 17). Evolutionary traps: How screens, digital notifications and gaming software exploits fundamental survival mechanisms. the peper perspective.

Peper, E., Harvey, R., & Faass, N. (2020). TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics. Berkeley: North Atlantic Books


Inna Khazan, PhD, interviews the authors of TechStress

Go behind the screen and watch Inna Khazan, PhD, faculty member at Harvard Medical School and author of Biofeedback and mindfulness in everyday life: Practical solutions for improving your health and performance, interview Erik Peper, PhD and Richard Harvey, PhD. coauthors of the new book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics. 

Dr. Inna Khazan interviews Dr. Erik Peper about his new book Tech Stress. We talk about some of the ways in which technology overuse affects our health and what we can do about it.

Dr. Inna Khazan interviews Dr. Rick Harvey about his new book Tech Stress, the way technology overuse can affect adults and children, and what we can do about it.


Ways to reduce TechStress

We are excited about our upcoming book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, that will be published August 25, 2020.

authors Erik and Rick1

Evolution shapes behavior — and as a species, we’ve evolved to be drawn to the instant gratification, constant connectivity, and the shiny lights, beeps, and chimes of our ever-present devices. In earlier eras, these hardwired evolutionary patterns may have set us up for success, but today they confuse our instincts, leaving us vulnerable and stressed out from fractured attention, missed sleep, skipped meals, aches, pains, and exhaustion and often addicted to our digital devices.

Tech Stress offers real, practical tools to avoid evolutionary pitfalls programmed into modern technology that trip us up. You will find a range of effective strategies and best practices to individualize your workspace, reduce physical strain, prevent sore muscles, combat brain drain, and correct poor posture. The book also provides fresh insights on reducing psychological stress on the job, including ways to improve communication with coworkers and family.

Although you will have to wait until August 25th to have the book delivered to your home, you can already begin to implement ways to reduce physical discomfort, zoom/screen fatigue and exhaustion. Have a look the blogs below.

How evolution shapes behavior 

Evolutionary traps: How screens, digital notifications and gaming software exploits fundamental survival mechanisms 

How to optimize ergonomics

Reduce TechStress at Home

Cartoon ergonomics for working at the computer and laptop 

Hot to prevent and reduce neck and shoulder discomfort

Why do I have neck and shoulder discomfort at the computer? 

Relieve and prevent neck stiffness and pain 

How to prevent screen fatigue and eye discomfort

Resolve Eyestrain and Screen Fatigue 

How to improve posture and prevent slouching

“Don’t slouch!” Improve health with posture feedback 

How to improve breathing and reduce stress

Anxiety, lightheadedness, palpitations, prodromal migraine symptoms?  Breathing to the rescue! 

How to protect yourself from EMF

Cell phone radio frequency radiation increases cancer risk

book cover

Available from: https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/


Why do I have neck and shoulder discomfort at the computer?

Adapted from the upcoming book, TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics, by Erik Peper, Richard Harvey and Nancy Faass.shoulder pain

While working in front of screens, many of us suffer from Zoom/screen fatigue, iNeck, shoulder and back discomfort, tired eyes, exhaustion and screen addiction (Peper, 2020; Fosslien & Duffy, 2020; So, Cheng & Szeto, 2017; Peper & Harvey, 2018). As we work, our shoulders and forearms tense and we are often not aware of this until someone mentions it. Many accept the discomfort and pain as the cost of doing work–not realizing that it may be possible to work without pain.

Observe how you and coworkers work at the computer, laptop or cellphone. Often we bring our noses close to the screen in order to the text more clearly and raise our shoulders when we perform data entry and use the mouse. This unaware muscle tension can be identified with physiological recording of the muscles electrical activity when they contract (electromyography) (Peper & Gibney, 2006; Peper, Harvey & Tylova, 2006). In most cases, when we rest our hands on our laps the muscle tension is low but the moment we even rest our hands on the keyboard or when we begin to type or mouse, our muscles may tighten, as shown in Figure 1. The muscle activity will also depend on the person’s stress level, ergonomic arrangement and posture.

EMGFigure 1. Muscle tension from the shoulder and forearm increased without any awareness when the person rested their hands on the keyboard (Rest Keyboard) and during typing and mousing. The muscles only relaxed when the hands were resting on their lap (Rest Lap) (reproduced by permission from Peper, Harvey, and Faass, 2020).

Stop reading from your screen and relax your shoulders.  Did you feel them slightly drop and relax?

If you experienced this release of tension and relaxation in the shoulders, then you were tightening your shoulders muscles without awareness. It is usually by the end of the day that we experience stiffness and discomfort. Do the following exercise as guided by the video or described in the text below to experience how discomfort and pain develop by maintaining low-level muscle tension.

While sitting, lift your right knee two inches up so that the foot is about two inches away from the floor. Keep holding the knee up in this position. Did you notice your breathing stopped when you lifted your knee? Are you noticing increasing tension and discomfort or even pain?  How much longer can you lift the knee up?

Let go, relax and observe how the discomfort dissipates.

Reasons for the discomfort

The discomfort occurred because your muscles were contracted, which inhibited the blood and lymph flow through the tissue. When your muscles contracted to lift your knee, the blood flow in those muscles was reduced. Only when your muscles relaxed could enough blood flow occur to deliver nutrients and oxygen as well as remove the waste products of metabolism (Wan et al, 2017). From a physiological perspective, muscles work most efficiently when they alternately contract and relax. For example, most people can walk without discomfort since their muscles contract and relax with each step.  However, you could  hold your knee up for a few minutes before experiencing discomfort in those same muscles.

How to prevent discomfort.

To prevent discomfort and optimize health, apply the same concept of alternating tensing and  relaxing to your neck, shoulder, back and arm muscles while working. Every few minutes move your arms and shoulders and let them relax. Interrupt the static sitting position with movement. If you need reminders to get up and move your body during the workday or long periods sitting in front of a device, you can download and install the free app, StretchBreak.

For more information, read and apply the concepts described in our upcoming book, TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. The book explains why TechStress develops, why digital addiction occurs, and what you can do to prevent discomfort, improve health and enhance performance. Order the book from Amazon and receive it August 25th. Alternatively,  sign up with the publisher and receive a 30% discount when the book is published August 25th. https://www.northatlanticbooks.com/shop/tech-stress/

book cover

References

Fosslien, L. & Duffy, M. W. (2020). How to combat Zoom fatigue. Harvard Business Review. April 29, 2020.

Peper, E. (2020). Resolve eye strain and screen fatigue. The peperperspective ideas on illness, health and well-being. Blog published June 29, 2020. 

Peper, E. & Gibney, K. H. (2006). Muscle Biofeedback at the Computer: A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. Amersfoort: The Netherlands: Biofeedback Foundation of Europe. ISBN 0-9781927-0-2. Free download of the the book: http://bfe.org/helping-clients-who-are-working-from-home/

Peper, E. & Harvey, R. (2018). Digital addiction: increased loneliness, depression, and anxiety. NeuroRegulation5(1),3–8

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Harvey, R. & Tylova, H. (2006). Stress protocol for assessing computer related disorders.  Biofeedback. 34(2), 57-62.

So, B.C.L., Cheng, A.S.K., & Szeto, G.P.Y. (2017). Cumulative IT use is associated with psychosial stress factors and musculoskeletal symptoms. Int. J. Environ. Res. Public Health 201714(12), 1541

Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y., & Liu, X. (2017). Muscle fatigue: general understanding and treatment. Experimental & molecular medicine49(10), e384. https://doi.org/10.1038/emm.2017.194

 


Resolve Eyestrain and Screen Fatigue

Adapted from: Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

eyes
Forty percent of adults and eighty percent of teenagers report experiencing significant visual symptoms (eyestrain, blurry vision, dry eyes, headaches, and exhaustion) during and immediately after viewing electronic displays. These ‘technology-associated overuse’ symptoms are often labeled as digital eyestrain or computer vision syndrome (Rosenfield, 2016; Randolph & Cohn, 2017). Even our distant vision may be affected— after working in front of a screen for hours, the world looks blurry. At the same time, we may experience an increase in neck, shoulders and back discomfort. These symptoms increase as we spend more hours looking at computer screens, laptops, tablets, e-readers, gaming consoles, and cellphones for work, taking online classes, watching streaming videos for entertainment, and keeping connected with friends and family (Borhany et al, 2018; Turgut, 2018; Jensen et al, 2002).

Eye, head, neck, shoulder and back discomfort are partly the result of sitting too long in the same position and attending to the screen without taking short physical and vision breaks, moving our bodies and looking at far objects every 20 minutes or so.  The obvious question is, “Why do we stare at and are captured by, the screen?”  Two answers are typical: (1) we like the content of what is on the screen; and, (2) we feel compelled to watch the rapidly changing visual scenes.

From an evolutionary perspective, our sense of vision (and hearing) evolved to identify predators who were hunting us, or to search for prey so we could have a nice meal.  Attending to fast moving visual changes is linked to our survival.  We are unaware that our adaptive behaviors of attending to a visual or auditory signals activate the same physiological response patterns that were once successful for humans to survive–evading  predictors,  identifying food, and discriminating between friend or foe. The large and small screen (and speakers) with their attention grabbing content and notifications have become an evolutionary trap that may lead to a reduction in health and fitness (Peper, Harvey & Faass, 2020).

Near vision stress

To be able to see the screen, the eyes need to converge and accommodate. To converge,  the extraocular muscles of the eyes tighten; to focus (accomodation), the ciliary muscle around the lens tighten to increase the curvature of the lens.  This muscle tension is held constant as long as we look at the screen. Overuse of these muscles results is near vision stress that contributes to computer vision syndrome, development of myopia in younger people, and other technology-associated overuse syndromes (Sherwin et al, 2012; Enthoven et al, 2020).

Continually overworking the visual muscles related to convergences increases tension and contributes to eyestrain. While looking at the screen, the eye muscles seldom have the chance to relax.  To function effectively, muscles need to relax /regenerate after momentary tightening. For the eye muscles to relax, they need to look at the far distance– preferably objects green in color. As stated earlier, the process of  distant vision occurs by relaxing the extraocular muscles to allow the eyes to diverge along with relaxing the ciliary muscle to allow the lens to flatten.  In our digital age, where screen of all sizes are ubiquitous, distant vision is often limited to the nearby walls behind a screen or desk which results in keeping the focus on nearby objects and  maintaining muscular tension in the eyes.

As we evolved, we continuously alternated between between looking at the far distance and nearby areas for food sources as well as signals indicating danger. If we did not look close and far, we would not know if a predator was ready to attack us.  Today we tend to be captured by the screens.  Arguably, all media content is designed to capture our attention such as data entry tasks required for employment, streaming videos for entertainment, reading and answering emails, playing e-games, responding to text notifications, looking at Instagram and Snapchat photos and Tiktok videos, scanning Tweets and using social media accounts such as Facebook. We are unaware of the symptoms of visual stress until we experience symptoms. To illustrate the physiological process that covertly occurs during convergence and accommodation, do the following exercise.

Sit comfortably and lift your right knee a few inches up so that the foot is an inch above the floor.  Keep holding it in this position for a minute…. Now let go and relax your leg.

A minute might have seemed like  a very long time and you may have started to feel some discomfort in the muscles of your hip.  Most likely, you observed that when you held your knee up, you most likely held your breath and tightened your neck and back. Moreover, to do this for more than a few minutes would be very challenging. 

Lift your knee up again and notice the automatic patterns that are happening in your body. 

For muscles to regenerate they need momentary relaxation which allows blood flow and lymph flow to occur. By alternately tensing and relaxing muscles, they can work more easily for longer periods of time without experiencing fatigue and discomfort (e.g., we can hike for hours but can only lift our knee for a few minutes).

Solutions to relax the eyes and reduce eye strain 

  • Reestablish the healthy evolutionary pattern of alternately looking at far and near distances to reduce eyestrain, such as:
    • Look out through a window at a distant tree for a moment after reading an email or clicking link.
    • Look up and at the far distance each time you have finished reading a page or turn the page over.
  • Rest and regenerate your eyes with palming. While sitting upright, place a pillow or other supports under our elbows so that your hands can cover your closed eyes without tensing the neck and shoulders.palming
    • Cup the hands so that there is no pressure on your eyeballs, allow the base of the hands to touch the cheeks while the fingers are interlaced and resting your forehead.
    • Close your eyes, imagine seeing black. Breathe slowly and diaphragmatically while feeling the warmth of the palm soothing the eyes. Feel your shoulders, head and eyes relaxing. Palm for 5 minutes while breathing at about six breaths per minute through your nose.  Then stretch and go back to work.

Palming is one of the many practices that improves vision. For a comprehensive perspective and pragmatic exercises to reduce eye strain, maintain and improve vision, see the superb book by Meir Schneider, PhD., L.M.T., Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement.

Increased sympathetic arousal

Seeing the changing stimuli on the screen evokes visual attention and increases sympathetic arousal. In addition, many people automatically hold their breath when they see novel visual or hear auditory signals; since, they trigger a defense or orienting response. At the same time, without awareness,  we may tighten our neck and shoulder  muscles as we bring our nose literally to the screen.  As we attend and concentrate to see what is on the screen, our blinking rate decreases significantly.  From an evolutionary perspective, an unexpected movement in the periphery could be a snake, a predator, a friend or foe and the body responds by getting ready: freeze, fight or flight. We still react the same survival responses. Some of the physiological reactions that occur include:

  • Breath holding or shallow breathing. These often occur the moment we receive a text notification, begin concentrating and respond to the messages, or start typing or mousing.  Without awareness,  we activate the freeze, flight and fight response. By breath holding or shallow breathing, we reduce or limit our body movements, effectively becoming a non-moving object that is more difficult to see by many animal predators.  In addition, during breath holding, hearing become more acute because breathing noises are effectively reduced or eliminated.
  • Inhibition of blinking. When we blink it is another movement signal that in earlier times could give away our position. In addition, the moment we blink we become temporarily blind and cannot see what the predator could be doing next.
  • Increased neck, shoulder and back tension. The body is getting ready for a defensive fight or avoidance flight.

Experience some of these automatic physiological responses described above by doing the following two exercises.

Eye movement neck connection:  While sitting up and looking at the screen, place your fingers on the back of the neck on either side of the cervical spine just below the junction where the spine meets the skull.

neck

Feel the muscles of neck along the spine where they are attaching to the skull. Now quickly look to the extreme right and then to the extreme left with your eyes. Repeat looking back and forth with the eyes two or three times.

What did you observe?  Most likely, when you looked to the extreme right, you could feel the right neck muscles slightly tightening and when you looked the extreme left, the left neck muscles slightly tightening.  In addition, you may have held your breath when you looked back and forth.

Focus and neck connection:  While sitting up and looking at the screen, place your fingers on the back of the neck as you did before. Now focus intently on the smallest size print or graphic details on the screen.  Really focus and concentrate on it and look at all the details.

What did you observe?  Most likely, when you focused on the text, you brought your head slightly forward and closer to the screen, felt your neck muscles tighten,  and possibly held your breath or started to breathe shallowly.

As you concentrated, the automatic increase in arousal, along with the neck and shoulder tension and reduced blinking contributes to developing discomfort. This can become more pronounced after looking at screens to detailed figures, numerical data, characters and small images for hours (Peper, Harvey & Tylova, 2006; Peper & Harvey, 2008; Waderich et al, 2013).

Staying alert, scanning  and reacting to the images on a computer screen or notifications from text messages, can become exhausting. in the past, we scanned the landscape, looking for information that will help us survive (predators, food sources, friend or foe)  however today, we react to the changing visual stimuli on the screen. The computer display and notifications have become evolutionary traps since they evoke these previously adaptive response patterns that allowed us to survive.

The response patterns occur mostly without awareness until we experience discomfort. Fortunately, we  can become aware of our body’s reactions with physiological monitoring which makes the invisible visible as shown in the figure below (Peper, Harvey & Faass, 2020).

biofeedback

Representative physiological patterns that occur when working at a computer, laptop, tablet or cellphone are unnecessary neck and shoulder tension, shallow rapid breathing, and an increase in heart rate during data entry. Even when the person is resting their hands on the keyboard, forearm muscle tension, breathing and heart rate increased.

Moreover, muscle tension in the neck and shoulder region also increased, even when those muscles were not needed for data entry task.  Unfortunately, this unnecessary tension and shallow breathing contributes to exhaustion and discomfort (Peper, Harvey & Faass, 2020).

With biofeedback training, the person can learn to become aware and control these dysfunctional patterns and prevent discomfort (Peper & Gibney, 2006; Peper et, 2003).  However, without access to biofeedback monitoring, assume that you respond similarly while working. Thus, to prevent discomfort and improve health and performance, implement the following.

Finally, for a comprehensive overview based on an evolutionary perspective that explains why TechStress develops, why digital addiction occurs. and what can be done to prevent discomfort and improve health and performance, see our new book by Erik Peper, Richard Harvey and Nancy Faass, Tech Stress-How Technology is Hijack our Lives, Strategies for Coping and Pragmatic Ergonomics.

book cover

References

Borhany, T., Shahid, E., Siddique, W. A., & Ali, H. (2018). Musculoskeletal problems in frequent computer and internet users. Journal of family medicine and primary care7(2), 337–339. 

Enthoven, C. A., Tideman, W.L., Roel of Polling, R.J.,Yang-Huang, J., Raat, H., & Klaver, C.C.W. (2020). The impact of computer use on myopia development in childhood: The Generation R study. Preventtive Medicine, 132, 105988.

Jensen, C., Finsen, L., Sogaard, K & Christensen, H. (2002). Musculoskeletal symptoms and duration of computer and mouse use,  International Journal of Industrial Ergonomics, 30(4-5), 265-275.

Peper, E. & Gibney, K. (2006). Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. The Biofeedback Federation of Europe. Download free PDF version of the book:  http://bfe.org/helping-clients-who-are-working-from-home/

Peper, E. & Harvey, R. (2008). From technostress to technohealth.  Japanese Journal of Biofeedback Research, 35(2), 107-114.

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Harvey, R. & Tylova, H. (2006). Stress protocol for assessing computer related disorders.  Biofeedback. 34(2), 57-62. 

Peper, E., Wilson, V.S., Gibney, K.H., Huber, K., Harvey, R. & Shumay. (2003). The Integration of Electromyography (sEMG) at the Workstation:  Assessment, Treatment and Prevention of Repetitive Strain Injury (RSI). Applied Psychophysiology and Biofeedback, 28 (2), 167-182.

Randolph, S.A. & Cohn, A. (2017).  Computer vision syndrome. Workplace, Health and Safety, 65(7), 328.

Rosenfield, M. (2016). Computer vision syndrome (a.k.a. digital eye strain). Optometry in Practice, 17(1), 1 1 – 10. 

Schneider, M. (2016). Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement. Berkeley: North Atlantic Books. https://self-healing.org/shop/books/vision-for-life-2nd-ed

Sherwin, J.C., Reacher, M.H., Keogh, R. H., Khawaja, A. P., Mackey, D.A.,& Foster, P. J. (2012). The association between time spent outdoors and myopia in children and adolescents. Ophthalmology,119(10), 2141-2151.

Turgut, B. (2018). Ocular Ergonomics for the Computer Vision Syndrome. Journal Eye and Vision, 1(2).

Waderich, K., Peper, E., Harvey, R., & Sara Sutter. (2013). The psychophysiology of contemporary information technologies-Tablets and smart phones can be a pain in the neck. Presented at the 44st Annual Meeting of the Association for Applied Psychophysiology and Biofeedback. Portland, OR.

 

 


Reduce TechStress at Home

Adapted from the upcoming book, Peper, E., Harvey, R., & Faass, (2020). Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

fig 1 extended neck

Numerous people report that working at the computer at home is more tiring than working in the office.  Although there are obvious advantages to working at home, there are also disadvantages (e.g., no space to work, challenging ergonomics, no escape from the family, lack of nonverbal cues used to communicate, less informal sharing at the water cooler, increased multitasking by working and having to take care of the children).

A major challenge is having a comfortable work space in your home.  This may mean finding a place to put the computer, keyboard and screen.  For some it is the kitchen table, desk in the corner of the bedroom, or coffee table while other it is in a totally separate room.

Incorrect ergonomic arrangement and stressed work style often increases neck, shoulder discomfort and aggravates eye strain and tiredness. Regardless how your digital work space is organized, implement the following life and work style suggestions and ergonomics recommendations to promote health.

LIFE AND WORK STYLE SUGGESTIONS

Take many, many, many breaks.  Movement breaks will reduce the covert static tension that builds up as we sit in static positions and work at the computer.

  • Every few minutes take a small break such as stand up and wiggle or role your shoulders. When performing the movements, stop looking at the screen and look around the room or out the window.
  • Every 30 minutes get up walk around for and move your body. Use timers to notify you every 30 minutes to take a break (e.g., cellphone alarms or personal digital assistants such as Hey Google, Siri, or Alexa).

Improve vision.

  • Take vision breaks to reduce eye fatigue.
    • Every few minutes look away from the screen and into the far distance and blink. If at all possible look outside at green plants which relaxes the near vision induced tension.
    • Blink and blink again. When working at the computer we reduce our blinking rate. Thus, blink each time you click on a new link, finishing entering a column of numbers, etc.
    • Close your eyes by letting the eye lids drop down as you also relax your jaw. Imagine a hook on top of your head which is pulling your head upward and at the same time drop your shoulders.
  • Reduce glare and bright backgrounds
    • Arrange your computer screen at 90 degrees to the brightest light source.
    • Have a darker background behind you when participating in video conferencing (e.g., Zoom, Skype, GoToMeeting, WhatsApp, FaceTime). Your face will be visible.

Regenerate

  • When stressed remember to breathe. As you inhale let your stomach expand as you exhale let the air flow out slowly.
  • Stop watching and listening to the negative news (check the news no more than once a day). Watch positive and humorous movies.
  • Get fresh air, go for a walk, and be in the sun
  • Reconnect with friends and share positive experiences.
  • Remind yourself, that this too shall pass.

ERGONOMIC RECOMMENDATIONS: MAKE THE WORLD YOURS

Good ergonomics means adapting the equipment and environment to you and not the other way around. Optimizes the arrangement of the chair, desk, keyboard, mouse, camera, screen and yourself as shown in Figure 1.

Workstation-Setup1

Figure 1. Recommended arrangement for working at the computer.

Arrange the laptop

The laptop is challenging because if your hands are at the right height for data entry on the keyboard, then you must look down to see the screen.  If the screen at the right height, then you have to raise your hands to reach the keyboard. There are two solutions for this challenge.

  1. Use an external keyboard and mouse, then raise the laptop so that the top of the screen is at eye level. Use a laptop stand or a stack of books to raise the lap top.
  2. Use an external monitor for display, then use the laptop as your keyboard.

If these solutions are not possible, take many, many, many breaks to reduce the neck and shoulder stress.

Arrange the computer workstation

  1. Adjust the chair so that your forearms can rest on the table without raising your shoulders. This may mean sitting on a pillow. If the chair is then too high and your legs dangle, create a foot stool on which you can rest your feet.
  2. Adjust the monitor so that the top of the screen is at eye level. If the monitor is too low, raise it by putting some books underneath it.
  3. If possible, alternate standing and sitting while working.

RESOURCES

Book

Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics provides insight in how discomfort, symptoms and media addiction develops and what you can do about it.  It incorporates the role of evolutionary traps, how biofeedback makes the unaware aware, experiential physical and cognitive practices, and ergonomic recommendations to optimize health and productivity. A must book for anyone using digital devices. Peper, E., Harvey, R., & Faass, (2020). Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Ergonomic suggestions for working at the computer and laptop.

https://peperperspective.com/2014/09/30/cartoon-ergonomics-for-working-at-the-computer-and-laptop/

https://peperperspective.com/2014/02/24/optimizing-ergonomics-adapt-the-world-to-you-and-not-the-other-way-around/

11 tips for working at home

https://www.bakkerelkhuizen.com/knowledge-center/11-productivity-tips-for-homeworkers/?utm_campaign=US+-+19+03+20&utm_source=Newsletter&utm_medium=email

How our digital world activates evolutionary response patterns.

https://peperperspective.com/2020/01/17/evolutionary-traps-how-screens-digital-notifications-and-gaming-software-exploits-fundamental-survival-mechanisms/

https://peperperspective.com/2018/02/10/digital-addiction/

How posture affects health

https://peperperspective.com/2019/07/01/dont-slouch-improves-health-with-posture-feedback/

https://peperperspective.com/2019/05/21/relieve-and-prevent-neck-stiffness-and-pain/

https://peperperspective.com/2017/11/28/posture-and-mood-implications-and-applications-to-health-and-therapy/

https://peperperspective.com/2019/01/23/head-position-it-matters/