Hope for teens with pain

Erik Peper, PhD and Rachel Zoffness, PhD*

 KM was 14 years old when he came to my (Zoffness) office for treatment. He’d been diagnosed with migraine and cyclical vomiting syndrome and had been in bed for about 3 years. He had long, unwashed hair; was a sickly, pasty white; and rocked himself back and forth from the pain. He’d seen 15 doctors and had been prescribed 30 medications, including occipital nerve injections and Thorazine. Nothing had worked. Like most teens with chronic pain, KM was depressed, stressed, and terrified he’d never get his life back.

We started Cognitive Behavioral Therapy (CBT), beginning with pain neuroscience education. This involved teaching KM and his family how pain works in the brain, and how thoughts, emotions, physical sensations and behaviors work together to trigger and maintain flares. He then learned a variety of cognitive, behavioral and mind-body techniques to help manage and change pain. His parents received parent-training to support him behind the scenes. After a few weeks of treatment, KM was able to get out of bed and walk to the corner mailbox. After a few more weeks, he was able to walk his dog to the dog park and get a haircut. Within a few months he was jogging around the block, then running. As his functioning increased, his brain desensitized and his body strengthened, his pain started to recede. Gradually he returned to school and social relationships, eventually rejoining his soccer team. I attended his high school graduation a year ago. He got onstage and told the audience that, if you’d told him 4 years ago that he’d graduate high school, he’d never have believed you. He is currently in college, successfully managing his pain, living his important life.

Chronic pain (CP) in teens can be devastating. Teens are already tasked with managing the turbulence of hormone changes, social stress, academic stress, social media, family dynamics, and developing autonomy and independence. CP impacts not only the teen, but also the entire family. Because CP is framed as a biomedical problem, it is frequently treated with opioids and other minimally-helpful (and sometimes harmful) medications. Opioids are ineffective for long-term treatment of chronic pain, and are only useful in acute crises or to control pain at the end of life (Dowell, 2016; King et al, 2011).

Although we typically think of chronic pain as an issue primarily affecting adults coping with issues such as post-surgical pain and arthritis, CP affects up to 1 in 3 youth in the USA – more than 10 million children and teens (Friedrichsdorf,  2016; ).  Pain impacts self-esteem, hope, and functioning, relegating teens to their beds and denying them normal educations and healthy social interactions.  Like adults, teens often feel powerless and blamed.  In a superb workbook, The Chronic Pain & Illness Workbook for Teens, psychologist Rachel Zoffness describes what pain is; how pain is constructed by the brain; how mind, body and emotions interact to affect pain; and offers a sequence of assessments and practices to reduce pain and improve health in language children and teens can easily understand.  The approach combines cognitive behavioral therapy (CBT) with imagery, mindfulness, breathing, handwarming with biofeedback, and somatic practices (Turk & Gatchel, 2018; Peper, Gibney, & Holt, 2002).

This simple graphic of the pain cycle is helpful to clients (see Fig. 1).

pain cycle

 Fig 1. CBT Pain Cycle

The pragmatic practices in this book offer tools and guided instructions that any child or teen can use for themselves, with parents, or with health providers.  Therapists can use and adapt these activities with their clients of all ages. Although these scientifically-supported pain management techniques are written for teens, they can equally be used with adults. Below are two of many different practices described in the book that are useful for chronic pain.

Practice 1: Assessment: What sets off your pain?

The first step is to help youth identify factors that “trigger” – or set off – their pain. It’s helpful to define a trigger as a difficult emotion, situation, or event that causes pain to increase. Difficult situations and events of all kinds – biological, social, etc (situational triggers) can trigger difficult thoughts and emotions (cognitive and emotional triggers), and vice versa. For example, Adam was recovering from back surgery (situational trigger), got into a big fight with his sister about the car (situational trigger), and became angry and frustrated (emotional trigger). He felt the anger in his body, his muscles got hot and tight, and his back started spasming. Gina is an example of the reverse. She believed that nothing could cure her fibromyalgia (cognitive trigger), which made her feel depressed and hopeless (emotional trigger). She stayed home for weeks on end without school, friends, or distractions (situational trigger), and started feeling worse.

We can help youth with pain by asking:

  • What emotions trigger your pain?
    • Frustration
    • Anger
    • Stress
    • Anxiety
    • Loneliness
    • Sadness
  • What situations trigger your pain?
    • Not getting enough sleep
    • Arguing with family members
    • Inflammation after physical therapy
    • Missing fun events because you’re sick
    • Thinking about upcoming exams
    • Doctor’s appointments and hospital visits

Sometimes, the teen needs to keep a log for a week to identify the situations or triggers related to the pain.  Once these have been identified then the teen can explore strategies to reduce the negative reactivity triggered by the emotions or situations.

Practice 2: Changing the voice of pain (Note: this is a summary of a longer activity)

One technique we use in CBT for chronic pain is identifying and tracking cognitive distortions, also known as “thinking traps.” I (Zoffness) call these traps “Pain Voice.” This is the catastrophic, pessimistic, critical, and negative voice that tells us awful, worrisome things, particularly about our pain or health.

For example:

Pain Voice pretends she can predict the future, and says it’s going to be terrible. She says: “You’ll never get better. Nothing will ever help you.” But since she can’t predict the future (who can?), Pain Voice is a liar! Pain Voice is also very bossy about what you can and can’t do: “You can’t see your friends this week,” or “You can’t go for a bike ride, and you definitely can’t have any fun.” Science teaches us that negative thoughts increase pain by turning up the brain’s “pain dial,” so we must make sure not to listen to or believe them. To stop Pain Voice, we first catch negative thoughts.

As soon as you learn how to recognize Pain Voice, you gain the power to change negative thoughts into more helpful “Wise Voice” thoughts. One way to bust Pain Voice is to start tracking your negative thoughts. First, list these critical, self-defeating, catastrophic Pain Voice thoughts. Notice if they’re helpful or harmful. Then check and question them, thoughtfully determining whether they’re the truth or a trap. Next, gather evidence as to why Pain Voice might be wrong by asking yourself, is this thought a fact? What evidence do I have that this thought might not be true? What else might happen other than what I’m predicting? Write out your Wise Voice responses, and use them to fight back every time you hear Pain Voice!

Jason’s example: Jason had terrible, daily back pain and hadn’t gone outside in 6 weeks. His friends texted, inviting him to watch a movie. Immediately he heard the thought, “I can’t go, I’m broken. If I leave my house my pain will spike and I won’t be able to function.” He recognized this as his Pain Voice and knew he had to fight back. He sat down with his worksheet and filled in the answers: yes, the thoughts were harmful, not helpful, and they were trying to trap him! He examined the evidence and wrote the Wise Voice thought, “This negative prediction is not a fact, it’s a trap. I’ve had back pain for 2 years, and sometimes going out and seeing friends actually reduces my pain.” Tuning into his Wise Voice gave him the strength to get the social support and distraction he needed to feel a little better! He went to his friend’s house, watched movies, ate popcorn, giggled, and had a great time. For the first time in 6 weeks, his pain went down. An example of his log is shown in table 1.

 Situation

Pain Voice

Helpful or Harmful?

Trap or

Truth

Wise Voice
Returning to school after missing 3 weeks If I go back to school, I’ll be so far behind that I won’t understand anything the teacher is talking about. Harmful Trap This negative prediction is not a fact. I’m smart and competent, I’ll probably understand some things. Last time I was behind, I made up the work and everything was fine.
 

 

Pain flare-up

 

 

 

I can’t handle this! Harmful Trap This negative prediction is not a fact. I’ve had 42 pain flare-ups this year, and I handled all of them. I’ve proven that I’m strong and resilient. There is a 0% chance I can’t handle this.

Table 1. Example from Jason’s log

Summary: There is hope for youth with chronic pain. Interventions like CBT, mindfulness, biofeedback and other mind-body approaches are scientifically-supported and have evidence of effectiveness. Adhering to the biopsychosocial model – targeting biological, psychological and social factors – is proven to be the most effective treatment for chronic pain across conditions and ages. For more information, see Rachel Zoffness’ book, The chronic pain & illness workbook for teens,  for pragmatic treatment practices and user-friendly pain education. 

book cover

References

Dowell, D., Haegerich, T. M., & Chou, R. (2016). CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA315(15), 1624-1645.

Friedrichsdorf, S. J., Giordano, J., Desai Dakoji, K., Warmuth, A., Daughtry, C., & Schulz, C. A. (2016). Chronic Pain in Children and Adolescents: Diagnosis and Treatment of Primary Pain Disorders in Head, Abdomen, Muscles and Joints. Children (Basel, Switzerland)3(4), 42. doi:10.3390/children3040042

King, S., Chambers, C., Huguet, A., MacNevin, R., McGrath, P., Parker, L., & MacDonald, A. (2011). The epidemiology of chronic pain in children and adolescents revisited: a systematic review. Pain152(12), 2729-2738.

Peper, E. Gibney, K.H., & Holt, C.F. (2002). Make Health Happen-Training Yourself to Create Wellness. Kendall Hunt Publishing. ISBN-13: 978-0787293314

Turk, D. C., & Gatchel, R.J. (2018). Psychological approaches to pain management-A Practionere’s Handbook.  New York: The Guilford Press, ISBN-13: 978-1462528530

Zoffness, R. (2019). The Chronic Pain & Illness Workbook for Teens. Oakland, CA; New Harbinger Publications, ISBN: 978168403352

*Dr. Rachel Zoffness is a pain psychologist, consultant, writer and educator in Northern California’s East Bay specializing in chronic pain and illness.

 


Provide hope and purpose: Focus on the good for all!

Erik Peper and Derek DoylefigureSource: https://devinepartners.com/2015/12/03/positive-news-sheds-light-this-winter/

“Fear stops action; hope initiate action.”

-Tali Sharot, PhD., author of Influential mind

Observe how you feel after you read the following two news reports:

Report 1. The graduating class at Atlanta’s historically black Morehouse College got the surprise of a lifetime on Sunday when commencement speaker and billionaire Robert F. Smith announced that he wasn’t just there to give the nearly 400 graduating seniors a nice motivational speech — he was also going to pay off their student debt.

“On behalf of the eight generations of my family that have been in this country, we’re gonna put a little fuel in your bus,” Smith, the founder of the investment firm Vista Equity and the richest black person in the United States, told the newest graduates of the prestigious all-male college. “This is my class, 2019. And my family is making a grant to eliminate their student loans.” (Lockhart, 2019).

News report 2: Gerry Dean Zaragoza, 26, is accused of fatally shooting his father and brother at a San Fernando Valley apartment before killing his ex-girlfriend at a gas station in North Hollywood, Los Angeles authorities said. He then is thought to have killed someone on a bus as police were searching for him during the 12-hour manhunt, Los Angeles police said. (Andrew Blankstein and Doha Madani (2019).

Which story made you feel more fearful and defensive; which story made you feel more positive and likely to help others?

The effect of incessant news

With the headlines screaming about killing, the endless repeating and commenting on tweeting lies  that evoke hatred, the creation of concentration camps and separating children from their immigrant mothers, or Representatives and Senators  focusing on winning the next election instead of focusing on the common good, we become fearful, discouraged and hopeless about the future. Surrounded by negative news we become apathetic, freeze in place, and close down to protect against loss.

Having traveled in the last few years to Japan, India, the Netherlands, Spain, Poland, Italy, and Canada, we observed that the USA is becoming a failed state.  The failing infrastructure of bridges and roads, the student debt that locks students into years of servitude, and the millions of people bankrupted by medical bills are only a few of the symptoms of our failing state and lack of positive vision. The more we allow ourselves to be bombarded by negative visual and auditory messages, the more we feel hopeless and powerless. We do not want to react out of hatred and disgust.  We want to focus on possibilities and be motivated by positive role models that will encourage positive action. Where is the inspirational vision for the future and the “Restoration Story” of how to get there? (Monbiot, 2019). We need a common mission for all to contribute to in our own unique and special way.

The images, words and thoughts that we allow to enter our brain become the hypnotic template for tomorrow’s action.  There is a  difference in saying, “I do not want hatred, fear and degrading commentary” versus “I want to learn from the inspirational work, aspirations and visions of nation builders and participate in this process.”

If you say to yourself, “I do not want to eat a piece of pie,” then that thought  evokes the image of piece of pie, which you may reject by saying “No.” This means that you are rehearsing eating the sweets and thus strengthening the desire.  If on the other hand you say to yourself, ‘I choose to eat more fruits and vegetables,” you are strengthening that desire. The thoughts help you identify the presence of fruits and vegetables more easily. Just as when you plan a vacation to Hawaii. All of a sudden there seems to be adds about Hawaii everywhere.

What we remember the next day depends upon what we focused upon earlier.  What we focus our attention and emotions on before going to sleep is what is stored in permanent memory and more likely to be remembered and acted upon the next day. Be careful what to look at and watch before going to sleep. It also impacts our physical and mental health. Children whose parents were emotionally upset and continue to watch the collapse of the World Trade Center buildings many times during the 9/11 terrorist attack experienced more stress symptom (including difficulty concentrating, difficulty falling asleep, losing temper/irritability, and nightmares) and 47% were worried about their own safety or the safety of loved ones (Hooker and Friedman, 2005).

Ask yourself, what images, speech and thoughts  you allow to enter your brain? In most cases, the news focuses upon destructive acts that evoke fear and implicitly reduce actual action.  Similarly, we can watch violent and toxic program on different streaming media such as Netflix, YouTube or Amazon Prime. As a result, we see the world much more dangerous than it  is.  Thus, we hover over children because we now think that they would be abducted by strangers (Amber Alert).  This increases the  public’s moral panic yet it is not clear if there has been an actual  increase in stranger child abduction in the last fifty years (Zgoba, 2006).

People who watch the news before going to sleep perceive their neighborhood as significantly more dangerously as compared to those who do not watch the news.  Because they believe their neighborhood is more dangerous, they avoid going out and by not going out make the neighborhood less communal and friendly. The information supports our negativity bias which focuses our attention on things that are dangerous or threatening (Soroka & McAdams, 2015)..

We have a choice to focus on what we would like instead of allowing to be bombarded by negative toxic messages and images.  This does not mean we stick our heads in the sand and are unaware, it means that we choose carefully how to balance the messages we receive. Instead of watching and listening to repeated negative news, listen or read (to) the news once during the day and then fill the day with positive news that evokes hope, good deeds and better possibilities for our communities.

Consider an experiment for a day or so..

Try searching and discovering some good news to share with family and friends. Watch their reaction and then extend the experiment for a few days seeking and sharing positive news.

Watch and listen to positive media such as:

  • GoodNews Network: The website, with its archive of 21,000 positive news stories from around the globe, confirms what people already know—that good news itself is not in short supply; the broadcasting of it is. https://www.goodnewsnetwork.org
  • TED Ideas worth spreading. TED is a global community, welcoming people from every discipline and culture who seek a deeper understanding of the world. We believe passionately in the power of ideas to change attitudes, lives and, ultimately, the world. https://www.ted.com/#/

After a few days or a week, ask how do you feel?

  • Are you more optimistic?
  • Do you feel safer and more relaxed?
  • Is sleep more restorative?

If you are like many others, you would feel slightly more hopeful, optimistic and positive.

What we allow to enter our brain becomes the template for the choices we make.

References

Blankstein, A. & Madani, D. (2019). Gunman suspected killing least three people in California shooting spree. NBC News, July 26, 2019.

Hooker, K.E., & Friedman, H. (2005). Responding to the psychological needs of children after 9/11: A review of the literature.

Lockhart, P.R. (2019). The Morehouse debt cancellation and the growing black student debt crisis. VOX Media. May 20, 2019.

Monbiot, G. (2019). The new political story that could change everything. TEDSummit.

Sharot, T. (2019). The influential mind-What the brain reveals about our power to change others. New York: Henry Holt and Company

Soroka, S. & McAdams, S. (2015). News, politics, and negativity. Political Communication, 32(1), 1-22.

Zgoba, K.M. (2006). Spin doctors and moral crusaders: the moral panic behind child safety legislation. Criminal Justice Studies, 17(4), 385-404.


“Don’t slouch!” Improve health with posture feedback

“Although I knew I slouched and often corrected myself, I never realized how often and how long I slouched until the vibratory posture feedback from the UpRight Go 2 cued me to sit up (see Figure 1).”  -Erik Peper

Fig 1 Erik wearing uprightFigure 1. Wearing an UpRight Go 2™ to increase awareness of slouching and as a reminder to change position.

For thousands of years we sat and stood erect. In those earlier times, we looked down to identify specific plants or animal track and then looked up and around to search for possible food sources, identify friends, and avoid predators.  The upright, not slouched posture body posture, is innate and optimizes body movement as illustrated in Figure 2 (for more information, see Gokhale, 2013).

Fig 2 baby and adultFigure 2. The normal aligned spine of a toddler and the aligned posture of a man carrying a heavy load.

Being tall and erect allows the head to freely rotate. Head rotation is reduced when we look down at our cell phones, tablets or laptops (Harvey, Peper, Booiman, Heredia Cedillo, & Villagomez, 2018). Our digital world captures us as illustrated in Figure 3.

Fig 3 head down computer cellphoneFigure 3. Captured by the screen with a head forward positions.

Looking down and focusing on the screen for long time periods is the opposite of what supported us to survive and thrive when we lived as hunters and gatherers. When we look down, we become more oblivious to our surroundings and unaware of the possible predators that would have been hunting us for food.

This slouched position increases back, neck, head and eye tension as well as affecting respiration and digestion (Devi, Lakshmi, & Devi, 2018; Peper, Lin, & Harvey, 2017).  After looking at the screens for a long time, we may feel tired or exhausted and lack initiative to do something else. Our mood may turn more negative since it is easier to evoke hopeless, helpless and powerless thoughts and memories when looking down than when looking up (Wilson, & Peper, 2004; Peper, Lin, Harvey, & Perez, 2017).   In the down position, our brain has to work harder to evoke positive thoughts and memories or perform cognitive tasks as compared to when the head is erect (Tsai, Peper, & Lin, 2016; Peper, Harvey, Mason, & Lin, 2018).  By looking down and focusing at the screen, our eyes may begin to strain. To be able to see objects near us, the extraocular muscles of the eyes contract to converge the eyes and the cilia muscles around the lens contract to increase the curvature of the lens so that the reading material is in focus.

Become aware how nearby vision increases eye strain.

Hold your arm straight ahead of you at eye level with your thumb up. While focusing on your thumb, slowly bring your thumb closer and closer to your nose.  Observe the increase in eyestrain as you bring your thumb closer to your nose.  

Eyestrain tends to develop when we do not relax the eyes by periodically looking away from the screen.  When we look at the horizon or trees in the far distance the ciliary muscles and the extraocular muscles  relax (Schneider, 2016).

Head forward posture increases neck and back tension

When we look down and concentrate, our head moves significantly forward. The neck and back muscles have to work much harder to hold the head up when the neck is in this flexed position. As Dr. Kenneth Hansraj, Chief of Spine Surgery New York Spine Surgery & Rehabilitation Medicine reported, “The weight seen by the spine dramatically increases when flexing the head forward at varying degrees. An adult head weighs 10-12 pounds in the neutral position. As the head tilts forward the forces seen by the neck surges to 27 pounds at 15 degrees, 40 pounds at 30 degrees, 49 pounds at 45 degrees and 60 pounds at 60 degrees.” (Hansraj, 2014).  Our head tends to tilt down when we look at the text, videos, emails, photos, or games and stay in this position for long time periods. We are captured by the digital display and are unaware of our tight overused neck and back muscles. Straightening up so that the back of the head is re-positioned over the spine and looking into the distance may help relax those muscles.

To reduce discomfort caused by slouching, we need to reintegrate our prehistoric life style pattern of alternating between looking down to being tall and looking at the distant scenery or across the room. The first step is awareness of knowing when slouching begins. Yet, we tend to be unaware until we experience discomfort or are reminded by others (e.g,  “Don’t slouch! Sit up straight!”). If we could have immediate posture feedback when we begin to slouch, our awareness would increase and remind us to change our posture.

Posture feedback with UpRight Go

Simple posture feedback device such as an UpRight Go 2™ can provide vibratory feedback each time slouching starts as the neck as the head goes forward.  The wearable feedback device consists of a small sensor that is attached to the back of the neck or back (see Figure 1). After being paired with a cellphone and calibrated for the upright position, the software algorithm detects changes in tilt and provides vibratory feedback each time the neck/back tilts forward.

In our initial exploration, employees, students and clients used the UpRight feedback devices at work, at school, at home, while driving, walking and other activities to identify situations that caused them to slouch. The most common triggers were:

  1. Ergonomic caused movement such as bring the head closer to the screen or looking down at their cell phone (for suggestions to improve ergonomics see recommendations at the end of the article)
  2. Tiredness
  3. Negative self-critical/depressive thoughts
  4. Crossing the legs protectively, shallow breathing, and other factors

After having identified some of the factors that were associated with slouching, we compared the health outcome of students who used the device for a minimum for 15 minutes a day for four weeks as compared to a control group who did not use the device. The students who received the UpRight feedback were also encouraged to use the feedback to change their posture and behavior and implemented some of the following strategies.

  • Head down when looking at their laptop, tablet or cellphone.
    • Change the ergonomics such as using a laptop stand and an external keyboard so that they could be upright while looking at the screen.
    • Take many movement breaks to interrupt the static tension.
  • Feeling tired.
    • Take a break or nap to regenerate.
    • Do fun physical activity especially activities where you look upward to re-energize.
  • Negative self-critical, powerless, self-critical and depressive thoughts and feelings.
    • Reframe internal language to empowering thoughts.
    • Change posture by wiggling and looking up to have a different point of view.
  • Crossing the legs.
    • Sit in power position and breathe diaphragmatically.
    • Get up and do a few movements such as shoulder rolls, skipping, or  arm swings.
  • Other causes.
    • Identify the trigger and explore strategies so that you can sit erect without effort.
    • Wiggle, move and get up to interrupt static muscle tension.
    • Stand up and look out of the window and the far distance while breathing slowly

Posture feedback improves health

After four weeks of using the feedback device and changing behavior,  the treatment group reported significant improvements in physical and mental health as shown in Figure 4 & 5.

Figurer 4

Figure 4. Using the posture feedback significantly improved the Physical Health and Mental Health Composite Scores for the treatment group as compared to the control group (reproduced from Mason, L., Joy, Peper, & Harvey, 2018).

Fig 5

Figure 5. Pre to post changes after using posture feedback (reproduced from Colombo, Joy, Mason, L., Peper, Harvey, & Booiman, 2017).

Summary

Slouched posture and head forward and down position usually occurs without awareness and often results in long-term discomfort. We recommend that practitioners integrate wearable biofeedback devices to facilitate home practice especially for people with neck, shoulder, back and eye discomfort as well as for those with low energy and depression (Mason et al., 2018).  We observed that a small wearable posture feedback device helped participants improve posture and decreased symptoms.  The vibratory posture feedback provided the person with the opportunity to identify the triggers associated with slouching and the option to change their posture, behavior and environment. 

As one participant reported, “I have been using the Upright device for a few weeks now. I mostly use the device while studying at my desk and during class. I have found that it helps me stay focused at my desk for longer time. Knowing there is something monitoring my posture helps to keep me sitting longer because I want to see how long I can keep an upright posture. While studying, I have found whenever I become frustrated, tired, or when my mind begins to wander I slouch. The Upright then vibrates and I become aware of these feelings and thoughts, and can quickly correct them. This device has improved my posture, created awareness, and increased my overall study time.”

Suggestions to reduce slouching and improve ergonomics

How to arrange your computer and laptop: https://peperperspective.com/2014/09/30/cartoon-ergonomics-for-working-at-the-computer-and-laptop/

Relieve neck and shoulder stiffness: https://peperperspective.com/2019/05/21/relieve-and-prevent-neck-stiffness-and-pain/

Cellphone health: https://peperperspective.com/2014/11/20/cellphone-harm-cervical-spine-stress-and-increase-risk-of-brain-cancer/

References

Colombo, S., Joy, M., Mason, L., Peper, E., Harvey, R., & Booiman, A. (2017). Posture Change Feedback Training and its Effect on Health. Poster presented at the 48th Annual Meeting of the Association for Applied Psychophysiology and Biofeedback, Chicago, IL March, 2017. Abstract published in Applied Psychophysiology and Biofeedback.42(2), 147.

Devi, R. R., Lakshmi, V.V., & Devi, M.G. (2018). Prevalence of discomfort and visual strain due to the use of laptops among college going students in Hyderabad. Journal of Scientific Research & Reports, 20(4), 1-5.

Ehrlich, D.L. (1987). Near vision stress: vergence adaptation and accommodative fatigue.Ophthalmic Physiology Opt.,7(4), 353-357.

Gokhale, E. (2013). 8 Steps to a Pain-Free Back. Pendo Press.

Hansraj, K. K. (2014). Assessment of stresses in the cervical spine caused by posture and position of the head. Surgical Technology International, 25, 277–279.

Harvey, R., Peper, E., Booiman, A., Heredia Cedillo, A., & Villagomez, E. (2018). The effect of head and neck position on head rotation, cervical muscle tension and symptoms. Biofeedback. 46(3), 65–71.

Mason, L., Joy, M., Peper, E., & Harvey, R. (2018).Wearable Posture Feedback Training: Effects on Health. Poster presented at the 2018 meeting of the 49th Annual Meeting of the Association for Applied Psychophysiology and Biofeedback, Orlando, FL. April 11-14.

Mason, L., Joy, M., Colombo, S., Peper, E., & Harvey, R. (2017). Biofeedback Strategies to Increase Social Justice and Health Equity: A wearable device to teach awareness of posture and improve self-care. Presented at the 19th Annual meeting of the Biofeedback Federation of Europe, Aveiro, Portugal, April 24-29th, 2017. Abstract in Applied Psychophysiology and Biofeedback,43(1), 93

Peper, E., Harvey, R., Mason, L., & Lin, I-M. (2018). Do better in math: How your body posture may change stereotype threat response. NeuroRegulation, 5(2), 67-74

Peper, E., Lin, I-M., Harvey, R., & Perez, J. (2017). How posture affects memory recall and mood.  Biofeedback.45 (2), 36-41.

Peper, E., Lin, I-M, & Harvey, R. (2017). Posture and mood: Implications and applications to therapy. Biofeedback, 35(2), 42-48.

Schneider, M. (2016). Vision for Life.  Berkeley, CA: North Atlantic.

Tsai, H. Y., Peper, E., & Lin, I. M. (2016). EEG patterns under positive/negative body postures and emotion recall tasks. NeuroRegulation, 3(1), 23-27.

Wilson, V. E., & Peper, E. (2004). The Effects of Upright and Slumped Postures on the Recall of Positive and Negative Thoughts. Applied Psychophysiology and Biofeedback, 29(3), 189- 95.

 

 


Do self-healing first

20170611_160113

“I am doing very well, and I am very healthy. The vulvodynia symptoms have never come back. Also,my stomach (gastrointestinal discomfort) has gotten much, much better. I don’t really have random pain anymore, now I just have to be watchful and careful of my diet and my exercise, which are all great things!”  —A five-year follow-up report from a 28-year-old woman who had previously suffered from severe vulvodynia (pelvic floor pain).

Numerous clients and students have reported that implementing self-healing strategies–common sense suggestions often known as “grandmother’s therapy”—significantly improves their health and find that their symptoms decreased or disappeared (Peper et al, 2014). These educational self-healing approaches are based upon a holistic perspective aimed to reduce physical, emotional and lifestyle patterns that interfere with healing and to increase those life patterns that support healing. This may mean learning diaphragmatic breathing, doing work that give you meaning and energy, alternating between excitation and regeneration, and living a life congruent with our evolutionary past.

If you experience discomfort/symptoms and worry about your health/well-being, do the following:

  • See your health professional for diagnosis and treatment suggestions.
    • Ask what are the benefits and risks of treatment.
    • Ask what would happen if you if you first implemented self-healing strategies before beginning the recommended and sometimes invasive treatment?
  • Investigate how you could be affecting your self-healing potential such as:
    • Lack of sleep
    • Too much sugar, processed foods, coffee, alcohol, etc.
    • Lack of exercise
    • Limited social support
    • Ongoing anger, resentment, frustration, and worry
    • Lack of hope and purpose
  • Implement self-healing strategies and lifestyle changes to support your healing response. In many cases, you may experience positive changes within three weeks. Obviously, if you feel worse, stop  and reassess. Keep a log and monitor what you do so that you can record changes.

This self-healing process has often been labeled or dismissed as the “placebo effect;” however, the placebo effect is the body’s natural self-healing response (Peper & Harvey, 2017).  It is impressive that many people report feeling better when they  take charge and become active participants in their own healing process. A process that empowers and supports hope and healing. When participants change their life patterns, they often feel better. Their health worries and concerns become reminders/cues to initiate positive action such as:

  • Practicing self-healing techniques throughout the day (e.g., diaphragmatic breathing, self-healing imagery, meditation, and relaxation)
  • Eating organic foods and eliminating processed foods
  • Incorporating daily exercise and movement activities
  • Accepting what is and resolving resentment, anger and fear
  • Taking time to regenerate
  • Resolving stress
  • Focusing on what you like to do
  • Be loving to yourself and others

For suggestions of what to do, explore some of the following blogs that describe self-healing practices that participants implemented to improve or eliminate their symptoms.

Acid reflux (GERD) https://peperperspective.com/2018/10/04/breathing-reduces-acid-reflux-and-dysmenorrhea-discomfort/

Anxiety https://peperperspective.com/2019/03/24/anxiety-lightheadedness-palpitations-prodromal-migraine-symptoms-breathing-to-the-rescue/

Dyspareunia https://peperperspective.com/2017/03/19/enjoy-sex-breathe-away-the-pain/

Eczema https://peperperspective.com/2015/03/07/interrupt-chained-behaviors-overcome-smoking-eczema-and-hair-pulling/

Headache https://peperperspective.com/2016/11/18/education-versus-treatment-for-self-healing-eliminating-a-headaches1/

Epilepsy https://peperperspective.com/2013/03/10/epilepsy-new-old-treatment-without-drugs/

Irritability/hangry https://peperperspective.com/2017/10/06/are-you-out-of-control-and-reacting-in-anger-the-role-of-food-and-exercise/

Hot flashes and premenstrual symptoms https://peperperspective.com/2015/02/18/reduce-hot-flashes-and-premenstrual-symptoms-with-breathing/

Internet addiction https://peperperspective.com/2018/02/10/digital-addiction/

Irritable bowel syndrome (IBS) https://peperperspective.com/2017/06/23/healing-irritable-bowel-syndrome-with-diaphragmatic-breathing/

Math and test anxiety https://peperperspective.com/2018/07/03/do-better-in-math-dont-slouch-be-tall/

Neck stiffness https://peperperspective.com/2017/04/06/freeing-the-neck-and-shoulders/

Neck tension https://peperperspective.com/2019/05/21/relieve-and-prevent-neck-stiffness-and-pain/

Posture and mood https://peperperspective.com/2017/11/28/posture-and-mood-implications-and-applications-to-health-and-therapy/

Psoriasis https://peperperspective.com/2013/12/28/there-is-hope-interrupt-chained-behavior/

Smoking https://peperperspective.com/2015/03/07/interrupt-chained-behaviors-overcome-smoking-eczema-and-hair-pulling/

Surgery https://peperperspective.com/2018/03/18/surgery-hope-for-the-best-but-plan-for-the-worst/

Trichotillomania (hair pulling) https://peperperspective.com/2015/03/07/interrupt-chained-behaviors-overcome-smoking-eczema-and-hair-pulling/

Vulvodynia https://peperperspective.com/2015/09/25/resolving-pelvic-floor-pain-a-case-report/

References

Peper, E., Lin, I-M, Harvey, R., Gilbert, M., Gubbala, P., Ratkovich, A., & Fletcher, F. (2014). Transforming chained behaviors: Case studies of overcoming smoking, eczema and hair pulling (trichotillomania). Biofeedback, 42(4), 154-160.

Peper, E. & Harvey, R. (2017). The fallacy of the placebo-controlled clinical trials: Are positive outcomes the result of “indirect” treatment effects? NeuroRegulation, 4(3–4), 102–113.

 


Relieve and prevent neck stiffness and pain

Is your neck stiff, uncomfortable and painful?

When driving is it more difficult to turn your head?

Neck and shoulder pain affect more than 30% of people (Fejer et al, 2006; Cohen, 2015).  This blog explores some strategies to reduce or prevent neck stiffness and discomfort and suggests practices to reduce discomfort and increase flexibility if you already are uncomfortable.

Shifts in posture may optimize neck flexibility

In our modern world, we frequently engage in a forward head position while looking at electronic devices or typing on computers. Prolonged smart phone usage has the potential to negatively impact posture and breathing functions (Jung et al., 2016) since we tilt our head down to look at the screen. Holding the head in a forward position, as displayed in Figure 1, can result in muscle tension in the spine, neck, and shoulders.

head forward alignedFig 1. Forward head and neck posture in comparison to a neutral spine. Source: https://losethebackpain.com/conditions/forward-head-posture/

Whenever you bring your head forward to look at the screen or tilt it down to look at your cellphone, your neck and shoulder muscles tighten and your breathing pattern become more shallowly.  The more the head is forward, the more difficulty is it to rotate your  head as is describe in the blog, Head position, it matters! (Harvey et al, 2018). Over time, the head forward position may lead to symptoms such as headaches and backpain. On the other hand, when we shift to an aligned upright position throughout the day, we create an opportunity to relieve this tension as shown in Figure 2.

EMG head forward uprightFigure 2. EMG and respiration recording from a subject sitting with a forward head position and a neutral, aligned head position.  The neck and shoulder muscle tension was recorded from the right trapezius and left scalene muscles (Mason et all, unpublished).    .

The muscle tension recorded from scalene and trapezius muscles (neck and shoulder) in Figure 2 shows that as the head goes forward or tilts down, the muscle tension significantly increases. In most cases participants are totally unware that their neck tightens. It is only after looking at the screen or focus our eyes until the whole day that we notice discomfort in the late afternoon.

Experience this covert muscle tension pattern in the following video, Sensing neck muscle tension-The eye, head, and neck connection.

Interrupt constant muscle tension

One possible reason why we develop the stiffness and discomfort is that we hold the muscles contracted for long time in static positions. If the muscle can relax frequently, it would significantly reduce the probability of developing discomfort. Experience this concept of interrupting tension practice by practicing the following:

  • Sit on a chair and lift your right foot up one inch up from the floor. Keep holding it up? For some people, as soon as five seconds, they will experience tightening and the onset of discomfort and pain in the upper thigh and hip.

How long could you hold your foot slight up from the floor?  Obviously, it depends on your motivation, but most people after one minute want to put the foot down as the discomfort become more intense.  Put the foot down and relax.  Notice the change is sensation and for some it takes a while for the discomfort to fade out.

  • The reason for the discomfort is that the function of muscle is to move a joint and then relax. If tightening and relaxation occurs frequently, then there is no problem
  • Repeat the same practice except lift the foot, relax and drop it down and repeat and repeat. Many people can easily do this for hours when walking.

What to do to prevent neck and shoulder stiffness.

Interrupt static muscle neck tension by moving your head neck and shoulder frequently while looking at the screen or performing tasks.  Explore some of the following:

  • Look away from the screen, take a breath and as you exhale, wiggle your head light heartedly as if there is a pencil at reaching from the top of your head to the ceiling and you are drawing random patterns on the ceiling. Keep breathing make the lines in all directions.
  • Push the chair back from the desk, roll your right shoulder forward, up and back let it drop down and relax. Then roll you left shoulder forward up and back and drop down and relax. Again, be sure to keep breathing.
  • Stand up and skip in place with your hands reaching to the ceiling so that when your right foot goes up you reach upward with your left hand toward the ceiling while looking at your left hand. Then, as your left foot goes up your reach upward to the ceiling with your right hand and look at your right hand.  Smile as you are skipping in place.
  • Install a break reminder program on your computer such as Stretch Break to remind you to stretch and move.
  • Learn how to sit and stand aligned and how to use your body functionally such as with the Gokhale Method or the Alexander Technique (Gokhale, 2013; Peper et al, in press, Vineyard, 2007).
  • Learn awareness and control neck and shoulder muscle tension with muscle biofeedback. For practitioners certified in biofeedback BCB, see https://certify.bcia.org/4dcgi/resctr/search.html
  • Become aware of your collapsed and slouching wearing a posture feedback device such as UpRight Go on your upper back. This device provides vibratory feedback every time you slouch and reminds you to interrupt slouching and be upright and alighned.

Improve ergonomics

Arrange your computer screen and keyboard so that the screen is at eye level instead of having to reach forward or look down. Similarly, hold your cell phone so that it is at eye level as shown in Figure 3 and 4.

laptop ergonomicsFigure 3. Slouching forward to see the laptop screen can be avoided by using an external keyboard, mouse and desktop riser. Reproduced by permission from www.backshop.nl

Cellphone

Figure 4.  Avoid the collapsed while looking down at a cell phone by resting the arms on a backpack or purse and keeping the spine and head alighned. Photo of upright position reproduced with permission from Imogen Ragone, https://imogenragone.com/

Check vision

If you are squinting, bringing your nose to the screen, or if the letters are too small or blurry, have your eyes checked to see if you need computer glasses.  Generally do not use bifocals or progressive glasses as they force you to tilt your head up or down to see the material at a specific focal length. Other options included changing the display size on screen by making the text and symbols larger may allow you see the screen without bending forward.  Just as your muscle of your neck, your eyes need many vision breaks.  Look away from the screen out of the window at a distant tree or for a moment close your eyes and breathe.

What to do if you have stiffness and discomfort

My neck was stiff and it hurt the moment I tried to look to the sides.  I was totally surprised that I rapidly increased my flexibility and reduced the discomfort when I implemented the following two practices.

Begin by implementing the previous described preventative strategies. Most important is to interrupt static positions and do many small movement breaks. Get up and wiggle a lot. Look at the blog, Freeing the neck and shoulder, for additional practices.

Then, practice the following exercises numerous times during the day to release neck and shoulder tension and discomfort. While doing these practices exhale gently when you are stretching.  If the discomfort increases, stop and see your health professional.

 

REFERENCES

Cohen, S.P. (2015). Epidemiology, Diagnosis, and Treatment of Neck Pain. Mayo Clinic Proceedings, 90 (2), 284-299. https://doi.org/10.1016/j.mayocp.2014.09.008

Fejer, R., Kyvik, K.Ohm, & Hartvigesen, J. (2006). The prevalence of neck pain in the world population: a systematic critical review of the literature. European Spine Journal, 15(6), 834-848. https://doi.org/10.1007/s00586-004-0864-4

Gokhale, E. (2013). 8 Steps to a Pain-Free Back. Pendo Press.

Harvey, R., Peper, E., Booiman, A., Heredia Cedillo, A., & Villagomez, E. (2018). The effect of head and neck position on head rotation, cervical muscle tension and symptoms. Biofeedback. 46(3), 65–71.

Mason, L., Peper, E., Harvey, R., & Hernandez, W. (unpublished). Healing headaches. Does success sustain over time?

Peper, E., Krüger, B., Gokhale, E., & Harvey, R. (in press). Comparing Muscle Activity and Spine Shape in Various Sitting Styles. Biofeedback.

 Vineyar, M. (2007). How You Stand, How You Move, How You Live: Learning the Alexander Technique to Explore Your Mind-Body Connection and Achieve Self-Mastery. Boston: Da Capo Lifelong Books.


Optimize success: Enrich treatment with placebo-the body’s own natural healing response*

When randomized controlled studies of pharmaceuticals or surgery find that the treatment is no more effective than the placebo, the authors conclude that surgery or drugs have no therapeutic value (Moseley et al, 2002; Jonas et al, 2015).  Even though the patients may have gotten better, the researchers often do not explore questions such as, why did some of the patients improve just with the placebo treatment; what are the components of the placebo process; and, how can clinicians integrate placebo components into their practice to enhance the body’s own natural healing response.

To explore these topics further, listen to Shankar Vedantam’s outstanding podcast, A Dramatic Cure, from the NPR program, Hidden Brain-A conversation about life’s unseen patterns. Also, read the background materials on the website https://www.npr.org/2019/04/29/718227789/all-the-worlds-a-stage-including-the-doctor-s-office

Presentation1Placebo effects can be a powerful healing strategy as demonstrated by numerous research studies that have persuasively explored the central features of the placebo effect. The research has found that the more dramatic and impressive the procedure, the more powerful the placebo effect.  For example, branded medicine with brightly colored packaging is more effective than generic medicine in plain boxes, an injection of a saline or sugar solution is more effective than taking a sugar pill, and placebo surgery is more effective than simply receiving an injection (Branthwaite & Cooper, 1981; Colloca & Benedetti, 2005).  For a detailed exploration of placebo, nocebo and the important role of active placebo, see the blog, How effective is treatment? The importance of active placebos.

To see the effect of the placebo in action, watch the well-known British stage hypnotist and illusionist, Derren Brown’s video, Fear and Faith  (https://www.youtube.com/watch?v=hfDlfhHVvTY).  He magically weaves together a narrative that  addresses the powerful influences of the natural, physical, and clinical environment and language used during a ‘therapeutic’ interaction. He shows how the influences of role modeling, the words that increase hope, trust and social compliance, and other covert factors promote healing. It uses the cover of a drug trial to convince various members of the public to overcome their fears using a placebo medicine called “Rumyodin” (which is a made-up name of a fake pharmaceutical) and demonstrates that the limits of experience are the limits of your belief.

This blog post serves as a reminder to ask ourselves as educators and therapists, ‘what can I do to include placebo enhancing components into my practice so that my clinical and educational outcomes are more effective?’  Explore ways to optimize your clinical environment, language use during  ‘therapeutic’ interactions, and role modeling to increase hope, trust and social compliance and thereby optimize your clients’ own natural healing response.

References:

Branthwaite A, Cooper P. (1981). Analgesic effects of branding in treatment of headaches. Br Med J Clin Res Ed. 282, 1576-8

Colloca, L. & Benedetti, F. (2005). Placebos and painkillers: is mind as real as matter? Nat Rev Neurosci. 6, 545-552.

Jonas, W. B., Crawford, C., Colloca, L. , et al.(2015). To what extent are surgery and invasive procedures effective beyond a placebo response? A systematic review with meta-analysis of randomised, sham controlled trials. BMJ Open, 5: e009655. doi:10.1136/ bmjopen-2015-009655

Moseley, J.B., et al, (2002). A controlled trial of arthroscopic surgery for osteoarthritis of the knee. New England Journal of Medicine. 347(2), 81-88.

*I thank Richard Harvey, PhD., for his constructive feedback and James Fadiman, PhD., for reminding me to reframe the term placebo into “the body’s natural healing response.”


Anxiety, lightheadedness, palpitations, prodromal migraine symptoms?  Breathing to the rescue!

I quickly gasped twice and a sharp pain radiated up my head and into my eye.  I shifted to slow breathing and it faded away.

I felt anxious and became aware of my heart palpitations at the end of  practicing 70% exhalation for 30 seconds.  I was very surprised how quickly my anxiety was triggered when I changed my breathing pattern. 

Breathing is the body/mind/emotion/spirit interface which is reflected in our language with phrases such as a sigh of relief, all choked up, breathless, full of hot air, waiting with bated breath, inspired or expired, all puffed up, breathing room, or it takes my breath away. The colloquial phrases reflect that breathing is more than gas exchange and may have the following effects.

  • Changes the  lymph and venous blood return from the abdomen (Piller, Leduc, & Ryan, 2006). The downward movement of the diaphragm with the corresponding expansion of the abdomen occurs during inhalation as well as slight relaxation of the pelvic floor. The constriction of the abdomen and slight tightening of the pelvic floor causing the diaphragm to go upward and allows exhalation. This dynamic movement increases and decreases internal abdominal and thoracic pressures and acts a pump to facilitate the venous and lymph return from the abdomen. In many people this dynamic pumping action is reduced because the abdomen does not expand during inhalation as it is constricted by tight clothing (designer jean syndrome), holding the abdomen in to maintain a slim self-image, tightening the abdomen in response to fear, or the result of learned disuse to reduce pain from abdominal surgery, gastrointestinal disorders, or abdominal insults (Peper et al, 2015).
  • Increases spinal disk movement. Effortless diaphragmatic breathing is a whole body process and associated with improved functional movement (Bradley, & Esformes, 2014). The spine slightly flexes when we exhale and extends when we inhale which allows dynamic disk movement unless we sit in a chair.
  • Communicates our emotional state as our breathing patterns reflect our emotional state. When we are anxious or fearful the breath usually quickens and becomes shallow while when we relax the breath slows and the movement is more in the abdomen (Homma, & Masoka, 2008).
  • Evokes, maintains, inhibits symptoms or promotes healing. Breathing changes our physiology, thoughts and emotions. When breathing slowly to about 6 breaths a minute, it may enhance heart rate variability and thereby increase sympathetic and parasympathetic balance (Lehrer & Gevirtz, 2014; Moss  &  Shaffer, 2017).

Can breathing trigger symptoms?

A fifty-five year old woman asked  for suggestions what she could do to prevent the occurrence of  episodic prodrome and aura symptoms of visual disturbances and problems in concentration that would signal the onset of a migraine.  In the past, she had learned to control her migraines with biofeedback; however, she now experienced these prodromal sensation more and more frequently without experiencing the migraine. As she was talking, I observed that she was slightly gasping before speaking with shallow rapid breathing in her chest.

To explore whether breathing pattern may contribute to evoke, maintain or amplify symptoms, the following two  behavioral breathing challenges can suggest whether breathing is a factor: Rapid fearful gasping or 70% exhalation.

Behavioral breathing challenge: Rapid fearful gasping

Take a rapid fearful gasp when inhaling as if your feel scared or fearful.  Let the air really quickly come in and repeat two or three times as described in the video. Then describe what you experienced.

 

If you became aware of the onset of a symptom or that the symptom intensified, then your dysfunctional breathing patterns (e.g.,  gasping, breath holding or shallow chest breathing) may contribute to development or maintenance of these symptoms. For many people when they gasp–a big rapid inhalation as if they are terrified–it may evoke their specific symptom such as a pain sensation  in the back of the eye,  slight pain in the neck,  blanking out, not being able to think clearly, tightness and stiffness in their  back, or even an increase in achiness in their joints (Peper et al, 2016).

To reduce or avoid triggering the symptom, breathe diaphragmatically without effort; namely each time you gasp, hold your breath or breathe shallowly, shift to effortless diaphragmatic breathing.

The above case of the woman with the prodromal migraine symptoms, she experienced visual disturbances and fuzziness in her head after the gasping.  This experience allowed her to realize that  her breathing style could be a contributing in triggering her symptoms.  When she then practiced slow diaphragmatic breathing for a few breaths her symptoms disappeared.  Hopefully, if she replaces gasping and shallow breathing with effortless diaphragmatic breathing then there is a possibility that her symptoms may no longer occur.

Behavioral breathing challenge: 70% exhalation

While sitting, breathe normally for a minute. Now change your breathing pattern so that you exhale only 70% or your previous inhaled air.  Each time you exhale, exhale only 70% of the inhaled volume. If you need to stop, just stop, and then return to this breathing pattern again by exhaling only 70 percent of the inhaled volume of air.  After 30 seconds, let go and breathe normally as guided by the video clip.  Observe what happened?

In our research study with 35 volunteers, almost all participants experienced an increase in arousal and symptoms such as lightheadedness, dizziness, anxiety, breathless, neck and shoulder tension after 30 seconds of incomplete exhalation  as shown in Figure 1 and Table 1 (Peper and MacHose, 1993).

anxiety

Figure 1. Increase in anxiety evoked by 70% exhalation.

symptoms

Table 1. Symptoms experienced after exhalation 70%.

Although these symptoms may be similar to those evoked by hyperventilation and overbreathing, they are probably not caused by the reduction of end-tidal carbon dioxide (CO2). The apparent decrease in end-tidal PCO2 is cause by the room air mixing with the exhaled air and not a measure of end-tidal CO2 (Peper and Tibbets, 1992).  Most likely the symptoms are associated by the shallow breathing that occurs when we were scared or terrified.

People who have a history of anxiety, panic, nervousness and tension as compared to those who report low anxiety  tend to report more symptoms when exhaling 70% of inhaled air for 30 seconds. If this practice evoked symptoms, then changing the breathing patterns to slower diaphragmatic breathing may be a useful self-regulation strategy to optimize health.

These two behavior breathing challenges are useful demonstrations for students and clients that breathing patterns can influence symptoms. By experiencing ON and OFF control over their symptoms with breathing,  the person now knows that breathing can affect their health and well being.  

Blogs that that offer instructions to learn effortless diaphragmatic breathing

https://peperperspective.com/2017/11/17/breathing-to-improve-well-being/

https://peperperspective.com/2017/06/23/healing-irritable-bowel-syndrome-with-diaphragmatic-breathing/

https://peperperspective.com/2018/10/04/breathing-reduces-acid-reflux-and-dysmenorrhea-discomfort/

https://peperperspective.com/2016/04/26/allow-natural-breathing-with-abdominal-muscle-biofeedback-1-2/

https://peperperspective.com/2015/02/18/reduce-hot-flashes-and-premenstrual-symptoms-with-breathing/

https://peperperspective.com/2017/03/19/enjoy-sex-breathe-away-the-pain/

REFERENCES

Bradley, H. & Esformes, J. (2014). Breathing pattern disorders and functional movement. International Journal of Sports Physical Therapy, 9(1), 28-39.

Homma, I. & Masoka, Y. (2008). Breathing rhythms and emotions. Experimental Physiology, 93(9), 1011-1021.

Lehrer, P.M. & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work? Frontiers in Psychology, 5 

Moss, D. &  Shaffer, F. (2017). The application of heart rate variability biofeedback to medical and mental health disorders. Biofeedback, 45(1), 2-8.

Peper, E., Gilbert, C.D., Harvey, R. & Lin, I-M. (2015). Did you ask about abdominal surgery or injury? A learned disuse risk factor for breathing dysfunction. Biofeedback. 34(4), 173-179.  DOI: 10.5298/1081-5937-43.4.06

Peper, E., Lee, S., Harvey, R., & Lin, I-M. (2016). Breathing and math performance: Implication for performance and neurotherapy. NeuroRegulation, 3(4),142–149.

Peper, E. & MacHose, M. (1993).  Symptom prescription:  Induc­ing anxiety by 70% exhalation. Biofeedback and Self-Regulation. 18(3), 133-139.

Peper, E. & Tibbetts, V. (1992). The effect of 70% exhalation and thoracic breathing upon end-tidal C02. Proceedings of the Twenty-Third Annual Meeting of the Association for Applied Psy­chophysiology and Biofeedback.  Wheat Ridge, CO: AAPB, 126-129. Abstract in: Biofeedback and Self-Regulation. 17(4), 333-334.

Piller, N., Leduc, A., & Ryan, T. (2006). Does breathing have an influence on lymphatic drainage? Journal of Lymphoedema, 1(1), 86-88.