Compassion supports healing: Case report how a “bad eye” became an “amazing eye”*
Posted: April 11, 2023 Filed under: behavior, cognitive behavior therapy, healing, health, mindfulness, Pain/discomfort, self-healing, stress management, Uncategorized, vision | Tags: compassion, self-image 1 CommentErik Peper, PhD and Dana Yirmiyahu

“I completely changed my perception of having a bad eye, to having an amazing eye. After two months, my eye is totally normal and healthy”
When experiencing chronic discomfort or reduced function, we commonly describe that part of our body that causes problems as broken or bad. Sometimes we even wish that it did not exist. In other cases, especially if there is pain or disfigurement, the person may attempt to dissociate from that body part. The language the person uses creates a graphic imagery that may impact the healing process; since, language can also be seen as a self-hypnotic suggestion.
The negative labeling, plus being disgusted or frustrated with that part of the body that is the cause of discomfort, often increases stress, tension and sympathetic activity. This reduces our self-healing potential. In many cases, the language is both the description and the prognosis-a self-fulfilling prophecy. If the description is negative and judgmental, it may interfere with the healing/treatment process. The negative language may activate the nocebo process that inhibits regeneration. On the other hand, positive affirming language may implicitly activate the placebo process that enhances healing.
By reframing the experience as positive and appreciating what the problem area of the body had done for you in the past as well as incorporating a healing compassionate process, healing is supported. Our limiting beliefs limit our possibilities. See the TED talk, A broken body isn’t a broken person, by Janine Shepherd (2014) who, after a horrendous accident and being paralyzed, became an acrobatic pilot instructor. Another example of a remarkable recovery is that of Madhu Anziani. After falling from a second floor window, he was a quadriplegic and used Reiki, toning, self-compassion and hope to improve his health. He reframed the problem as an opportunity for growth. He can now walk, talk and play the most remarkable music (Anziani and Peper, 2021).
When a person can focus on what they can do instead of focusing on what they cannot do or on their suffering, pain may be reduced. For example, Jill Cosby describes undergoing two surgeries to replace her shattered L3 with a metal “cage” and fused this cage to the L4 and L2 vertebrae with bars. She used imagery to eliminate the pains in her back and stopped her pain medications (Peper et al., 2022). The healing process is similar to how children develop, growth, and learn–a process that is promoted through playfulness and support with an openness to possibilities.
Healing only goes forwards in time
After an injury, most people want to be the same as they were before the injury, and they keep comparing themselves to how they were. The person can never be what they were in the past, butthey can be different and even better.. Time flows only in a forward direction, and the person already has been changed by the experience. Instead, the person explores ways to accept where they are, appreciate how much the problem area has done for them in the past, and continue to work to improve. This is a dynamic process in which the person appreciates the very small positive changes that are occurring without setting limits on how much change can occur.
A useful tool while working with clients is to explore ways by which they can genuinely transform their negative beliefs and self-talk about the problem to appreciation and growth. This process is illustrated in the following report about the rapid healing of a 15-year problem with an eye that had become smaller following severe corneal abrasion.
Case report
On January 18th, 2023, I attended a workshop/ lecture by Professor Erik Peper.
During the break, I spoke to him and expressed my concern regarding my right eye. 15 years ago, the cornea of my eye was accidently scratched by my 3-year-old daughter. The eye suffered a trauma and was treated at the hospital. In addition, I had a patch over my eye for 3 weeks and suffered extrusion pain during the first 2 weeks. A scar remained on my eye, and doctors were not able to say if it would be permanent or whether the eye would heal itself eventually. An invasive operation was also suggested, which I refused. The trauma affected my eyesight for a few months, but after a year, the scar was gone and physically no permanent damage has remained.
Although it was certainly determined that my eye had healed completely, it didn’t feel that way at all. I always considered it ‘my bad eye’ and suffered irritation and pain every time I experienced tiredness, anxiety, or any other emotional discomfort. My eye was the first and only organ to reflect pain/itchiness/irritation. Over time, my eye ‘shrank’ as well. It became visibly smaller and it felt tense at all times.
For 15 years, that was my reality! I coped with it and haven’t thought of it much, until January 18, when I attended the workshop.
Professor Peper asked me to the front of the stage when we returned from break and conducted an exercise with me, where I used my imagination and words to comfort my eye and embrace it rather than call it ‘the defective/bad eye’. He pointed out that if you only describe your children as bad or evil, how can you expect them to grow? Then, he explored with me a few exercises such as evoking self-healing imagery. The self-healing imagery did not totally resonate; however, I felt I just needed to hug my eye. I thanked my eye for its being and stroked it gently in my mind. On stage and during the rest of the lecture I felt a sense of comfort. I felt if the muscles around my eye had finally loosened–a feeling I haven’t experienced for years. I continued to follow the instructions I got at the workshop for a couple of days, but unfortunately, I did not persist, and the negative sensations returned.
On a follow-up zoom meeting 10 days after the lecture with Prof. Peper, I received additional tools to practice ‘eye physiotherapy’ as well as mindfulness regarding the eye. This practice consisted of closing my eyes and covering the non-problem eye and then as I exhaled gently and softly opening my eyes, opening them more and more while looking all around. I completely changed my perception of having a bad eye, to having ‘an amazing eye’. At first talking to it didn’t come naturally to me but as I persisted it became easier and easier. I did it in the car, before going to sleep and when waking up in the morning. In addition, I practiced the exercises I got over zoom, where I covered my left eye (the undamaged one) and had my right eye look up and down to both sides.
It has been about three months since this zoom meeting and I am awed by the results. My eye has opened more, and no longer feels shrunk and small, I rarely feel negative sensations in it and when I do, I immediately know how to handle it.
I can say that attending this workshop has definitely been a life-changing event for my amazing right eye and for me.
Why did the healing occur?
The “bad eye” symptoms were most likely caused by “learned disuse”; namely, the chronic eye tension was the result of the protective response to reduce the discomfort after the injury to the cornea (Uswatte & Taub, 2005). After the injury and medical treatment, she would have unknowingly tensed her muscles around the eye to protect it. This process occurs automatically without conscious awareness. This protective response became her “new normal” and once her eye had healed, the bracing continued. The bracing pattern was amplified by the ongoing self-labeling of having a “bad eye.” By accepting the eye as it was, giving it compassionate caring and support, and following up with simple eye movement exercises to allow the eye to rediscover and experience the complete range of motion, the symptoms disappeared.
What can we take home from this case example?
Listen to the language a client uses to describe their problem. Does the language implicitly limit recovery, growth and hope (e.g., I will always have the problem)? Does the language inhibit caring and compassion for the problem area (e.g., I’m frustrated, angry, disgusted)? If that is the case, explore ways to reframe the language and emotional tone. A useful strategy is to incorporate self-healing imagery: the person first inspects the problem area, next imagines how it would look when it is healthy, and finally creates self-healing imagery that transforms what was observed to become well and whole. Then, each moment the client’s attention is drawn to the problem, he or she evokes the self-healing imagery (Peper, Gibney, & Holt, 2002). In many cases, combining this imagery with slower breathing to reduce stress promotes healing.
References
Anziani, M. & Peper, E. (2021). Healing from paralysis-Music (toning) to activate health. the peper perspective-ideas on illness, health and well-being from Erik Peper. Accessed March 22, 2023. https://peperperspective.com/2021/11/22/healing-from-paralysis-music-toning-to-activate-health/
Mullins, A. (2009). The opportunity of adversity. TEDMED. Accessed March 22, 2023. https://www.ted.com/talks/aimee_mullins_the_opportunity_of_adversity?language=en
Peper, E. Cosby, J. & Amendras, M. (2022). Healing chronic back pain. NeuroRegulation, 9(3), 165-172. https://doi.org/10.15540/nr.9.3.164
Peper, E., Gibney, H. K. & Holt, C. (2002). Make Health Happen. Dubuque, Iowa: Kendall-Hunt. pp. 193-236. https://he.kendallhunt.com/make-health-happen
Shepherd, J. (2014). A broken body isn’t a broken person. TEDxKC. Accessed March 20, 2023 https://www.ted.com/talks/janine_shepherd_a_broken_body_isn_t_a_broken_person?language=en
Uswatte, G. & Taub, E. (2005). Implications of the Learned Nonuse Formulation for Measuring Rehabilitation Outcomes: Lessons From Constraint-Induced Movement Therapy. Rehabilitation Psychology, 50(1), 34-42. https://doi.org/10.1037/0090-5550.50.1.34
*I thank Cathy Holt, MPH, for her supportive feedback.
Biofeedback, posture and breath: Tools for health
Posted: December 1, 2022 Filed under: ADHD, behavior, biofeedback, Breathing/respiration, CBT, cognitive behavior therapy, computer, digital devices, education, emotions, ergonomics, Evolutionary perspective, Exercise/movement, healing, health, laptops, mindfulness, Neck and shoulder discomfort, Pain/discomfort, posture, relaxation, screen fatigue, self-healing, stress management, Uncategorized, vision, zoom fatigue 2 CommentsTwo recent presentations that that provide concepts and pragmatic skills to improve health and well being.
How changing your breathing and posture can change your life.
In-depth podcast in which Dr. Abby Metcalf, producer of Relationships made easy, interviews Dr. Erik Peper. He discusses how changing your posture and how you breathe may result in major improvement with issues such as anxiety, depression, ADHD, chronic pain, and even insomnia! In the presentation he explain how this works and shares practical tools to make the changes you want in your life.
How to cope with TechStress
A wide ranging discussing between Dr. Russel Jaffe and Dr Erik that explores the power of biofeedback, self-healing strategies and how to cope with tech-stress.
These concepts are also explored in the book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics. You may find this book useful as we spend so much time working online. The book describes the impacts personal technology on our physical and emotional well-being. More importantly, “Tech Stress” provides all of the basic tools to be able not only to survive in this new world but also thrive in it.
Additiona resources:
Gonzalez, D. (2022). Ways to improve your posture at home.
Addicted to your phone? How to separate from your phone for a healthy lifestyle[1]
Posted: September 21, 2021 Filed under: behavior, computer, digital devices, education, ergonomics, Evolutionary perspective, Exercise/movement, health, Neck and shoulder discomfort, posture, vision, zoom fatigue 2 CommentsErik Peper, PhD[2] and Monica Almendras

Our evolutionary traps with technology
Maintaining and optimizing health at the computer means re-envisioning our relationship with technology—and reclaiming health, happiness, and sanity in a plugged-in world. We have the ability to control everything from our mobile phones without needing to get up from our seat. Work, social life and online learning all involve the mobile phone or some type of smart devices.
A convenient little device that is supposed to simplify our lives has actually trapped us into a vicious cycle of relying on it for every single thing we must do. We spend most of our day being exposed to digital displays on our smartphones, computers, gaming consoles, and other digital devices, immersing ourselves in the content we are viewing. From work related emails or tasks, to spending our free time looking at the screen for texting, playing games, and updating social media sites on a play-by-play of what we are eating, wearing, and doing. We click on one hyperlink after the other and create a vicious cycle trapped for hours until we realize we need to move. We are unaware how much time has frittered away without actually doing anything productive and then, we realize we have wasted another day. Below are some recent estimates of ‘daily active user’ minutes per day that uses a screen.
- Facebook about an hour per day
- Instagram just under an hour per day
- Texting about 45 minutes per day
- Internet browsing, about 45 minutes per day
- Snapchat, about 30 minutes per day
- Twitter, about 25 minutes per day
Adolescents and college students interact with media for over 40 hours per week, or around 6 hours per day. That is a lot of hours spent on staring at the screen, which it is almost impossible not to be distracted by the digital screen. In time, we rehearse a variety of physical body postures as well as a variety of cognitive and behavioral states that impact our physical, mental, emotional, and social health. The powerful audiovisual formats override our desires to do something different, that some of us become enslaved to streaming videos, playing virtual games, or texting. We then tell ourselves that the task that needs to be done, will be finished later. That later becomes never by the end of the day, since the ongoing visual and auditory notifications from our apps interrupt and/or capture our attention. This difficulty to turn away from visual or auditory stimuli roots in our survival instincts.
Each time visual or auditory stimuli occur, we automatically check it out and see if it is a friend or foe, safety or danger. It is such an automatic response that we are unaware are reacting. The good news is that we all have experienced this compelling effect. Even when we are waiting for a response and the notifications has not arrived, we may anticipate or project that there may be new information on our social media accounts, and sometimes we become disappointed when the interval between notification is long. As one student said, “Don’t worry, they’ll respond. It’s only been 30 seconds”. Anticipating responses from the media can interrupt what we are otherwise doing. Rather than finishing our work or task, we continuously check for updates on social media, even though we probably know that there are no new important messages to which we would have to respond right away.
Unfortunately, some forms of social media interactions also lead to a form of social isolation, loneliness–sometimes called phoneliness (Christodoulou, G., Majmundar, A., Chou, C-P, & Pentz, M.A., 2020; Kardaras, 2017). Digital content requires the individual to respond to the digital stimuli, without being aware of the many verbal and nonverbal communication cues (facial expressions, gestures, tone of voice, eye contact, body language, posture, touch, etc.) that are part of social communication (Remland, 2016). It is no wonder that more and more adolescents experience anxiety, depression, loneliness, and attention deficit disorders with a constant ‘digital diet’ that some have suggested that include not only media, but junk food as well.
In my class survey of 99 college students, 85% reported experiencing anxiety, 48% neck and should tension, and 41% abdominal discomfort.
We are not saying to avoid the beneficial parts of the digital age. Instead, it should be used in moderation and to be aware of how some material and digital platforms prey upon our evolutionary survival mechanisms. Unfortunately, most people -especially children- have not evolved skills to counter the negative impacts of some types of media exposure. Parental control and societal policies may be needed to mitigate the damage and enhance the benefits of the digital age.
Zoom Fatigue- How to reduce it and configure your brain for better learning
Zoom became the preferred platform for academic teaching and learning for synchronous education during the pandemic. Thus, students and faculty have been sitting and looking at the screen for hours end. While looking at the screen, the viewers were often distracted by events in their environment, notifications from their mobile phones, social media triggers, and emails; which promoted multitasking (Solis, 2019). These digital distractions cause people to respond to twice as many devices with half of our attention- a process labeled semi-tasking’ -meaning getting twice as much done and half as well.
We now check our phones an average of 96 times a day – that is once every 10 minutes and an increase of 20% as compared to two years ago (Asurion Research, 2019). Those who do media multitasking such as texting while doing a task perform significantly worse on memory tasks than those who are not multitasking (Madore et al., 2020). Multitasking is negatively correlated with school performance (Giunchiglia et al, 2018). The best way to reduce multitasking is to turn off all notifications (e.g., email, texts, and social media) and let people know that you will look at the notifications and then respond in a predetermined time, so that you will not be interrupted while working or studying.
When students from San Francisco State University in the United States chose to implement a behavior change to monitor mobile phone and media use and reduce the addictive behavior during a five-week self-healing project, many reported a significant improvement of health and performance. For example one student reported that when she reduced her mobile phone use, her stress level equally decreased as shown in Fig 1 (Peper et al, 2021).

Figure 1. Example of student changing mobile phone use and corresponding decrease in subjective stress level. Reproduced by permission from Peper et al. (2021).
During this class project, many students observed that the continuous responding to notifications and social media affected their health and productivity. As one student reported,
The discovery of the time I wasted giving into distractions was increasing my anxiety, increasing my depression and making me feel completely inadequate. In the five-week period, I cut my cell phone usage by over half, from 32.5 hours to exactly 15 hours and used some of the time to do an early morning run in the park. Rediscovering this time makes me feel like my possibilities are endless. I can go to work full time, take online night courses reaching towards my goal of a higher degree, plus complete all my homework, take care of the house and chores, cook all my meals, and add reading a book for fun! –22-year-old College Student
Numerous students reported that it was much easier to be distracted and multitask, check social media accounts or respond to emails and texts than during face-to-face classroom sessions as illustrated by two student comments from San Francisco State University.
“Now that we are forced to stay at home, it’s hard to find time by myself, for myself, time to study, and or time to get away. It’s easy to get distracted and go a bit stir-crazy.”
“I find that online learning is more difficult for me because it’s harder for me to stay concentrated all day just looking at the screen.”
Students often reported that they had more difficulty remembering the material presented during synchronous presentations. Most likely, the passivity while watching Zoom presentations affected the encoding and consolidation of new material into retrievable long-term memory. The presented material was rapidly forgotten when the next screen image or advertisement appeared and competed with the course instructor for the student’s attention. We hypothesize that the many hours of watching TV and streaming videos have conditioned people to sit and take in information passively, while discouraging them to respond or initiate action (Mander, 1978; Mărchidan, 2019).
To reduce the deleterious impact of media use, China has placed time limits on cellphone use, gaming, and social media use for children. On February 2021 Chinese children were banned from taking their mobile phones into school, on August 2021 Children under 18 were banned from playing video games during the week and their play was restricted to just one hour on Fridays, weekends and holidays, and beginning on September 20, 2021 children under 14 who have been authenticated using their real name can access Douyin, the Chinese version of Tik Tok, for maximum of 40 minutes a day between the hours of 6:00 and 22:00.
Ways to avoid Zoom
Say goodnight to your phone
It is common for people to use their mobile phone before going to bed, and then end up having difficult falling asleep. The screen emits blue light that sends a signal to your brain that says it is daytime instead of night. This causes your body to suppress the production of the melatonin hormone, which tells your body that it is time to sleep. Reading or watching content also contributes, since it stimulates your mind and emotions and thereby promote wakefulness (Bravo, 2020). Implement sleep hygiene and stop using your phone or watching screens 30-minutes before going to bed for a better night’s sleep.
Maintaining a healthy vision
We increase near visual stress and the risk of developing myopia when we predominantly look at nearby surfaces. We do not realize that eyes muscles can only relax when looking at the far distance. For young children, the constant near vision remodels the shape of eye and the child will likely develop near sightedness. The solutions are remarkably simple. Respect your evolutionary background and allow your eyes to spontaneously alternate between looking at near and far objects while being upright (Schneider, 2016; Peper, 2021; Peper, Harvey & Faass, 2020).
Interrupt sitting disease
We sit for the majority of the day while looking at screens that is a significant risk factor for diabetes, cardiovascular disease, depression and anxiety (Matthews et al., 2012; Smith et al., 2020). Interrupt sitting by getting up every 30 minutes and do a few stretches. You will tend to feel less sleepy, less discomfort and more productive. As one of our participants reported that when he got up, moved and exercised every 30 minutes at the end of the day he felt less tired. As he stated, “There is life after five”, which meant he had energy to do other activities after working at the computer the whole day. While working time flies and it is challenging to get up every 30 minutes. Thus, install a free app on your computer that reminds you to get up and move such as StretchBreak (www.stretchbreak.com).
Use slouching as a cue to change
Posture affects thoughts and emotions as well as, vice versa. When stressed or worried (e.g., school performance, job security, family conflict, undefined symptoms, or financial insecurity), our bodies tend to respond by slightly collapsing and shifting into a protective position. When we collapse/slouch, we are more at risk to:
- Feel helpless (Riskind & Gotay, 1982).
- Feel powerless (Westfeld & Beresford, 1982; Cuddy, 2012).
- Recall and being more captured by negative memories (Peper, Lin, Harvey, & Perez, 2017; Tsai, Peper, & Lin, 2016),
- Experience cognitive difficulty (Peper, Harvey, Mason, & Lin, 2018).
When stressed, anxious or depressed, it is challenging to change. The negative feelings, thoughts and worries continue to undermine the practice of reframing the experience more positively. Our recent study found that a simple technique, that integrates posture with breathing and reframing, rapidly reduces anxiety, stress, and negative self-talk (Peper, Harvey, Hamiel, 2019). When you are captured by helpless defeated thoughts and slouch, use the thought or posture as the trigger to take change. The moment you are aware of the thoughts or slouched posture, sit up straight, look up, take a slow large diaphragmatic breath and only then think about reframing the problem positively (Peper, Harvey, Hamiel, 2019).
When we are upright and look up, we are more likely to:
- Have more energy (Peper & Lin, 2012).
- Feel stronger (Peper, Booiman, Lin, & Harvey, 2016).
- Find it easier to do cognitive activity (Peper, Harvey, Mason, & Lin, 2018).
- Feel more confident and empowered (Cuddy, 2012).
- Recall more positive autobiographical memories (Michalak, Mischnat,& Teismann, 2014).
The challenge is that we are usually unaware we have begun to slouch. A very useful solution is to use a posture feedback device to remind us, such as the UpRight Go (https://www.uprightpose.com/). This simple device and app signals you when you slouch. The device attaches to your neck and connects with blue tooth to your cellphone. After calibrating, it provides vibrational feedback on your neck each time you slouch. When participants use the vibration feedback to become aware of what is going on and interrupt their slouch by stretching and sitting up, they report a significant decrease in symptoms and an increase in productivity. As one student reported: “Having immediate feedback on my posture helped me to be more aware of my body and helped me to link my posture to my emotions. Before using the tracker, doing this was very difficult for me. It not only helped my posture but my awareness of my mental state as well.”
[1] Adapted from the book by Erik Peper, Richard Harvey and Nancy Faass, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, North Atlantic Press. https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/
[2] Correspondence should be addressed to:
Erik Peper, Ph.D., Institute for Holistic Healing Studies/Department of Recreation, Parks, Tourism and Holistic Health, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 COVID-19 mailing address: 2236 Derby Street, Berkeley, CA 94705 Email: epeper@sfsu.edu web: www.biofeedbackhealth.org blog: www.peperperspective.com
Are you encouraging your child to get into accidents or even blind when growing up?
Posted: May 12, 2021 Filed under: ADHD, behavior, computer, education, ergonomics, Evolutionary perspective, Exercise/movement, laptops, Neck and shoulder discomfort, posture, screen fatigue, Uncategorized, vision | Tags: glaucoma, myopia, nearsightedness, palming 3 CommentsErik Peper and Meir Schneider
Adapted in part from: TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics by Erik Peper, Richard Harvey and Nancy Faass
As a young child I laid on the couch and I read one book after the other. Hours would pass as I was drawn into the stories. By the age of 12 I was so nearsighted that I had to wear glasses. When my son started to learn to read, I asked him to look away at the far distance after reading a page. Even today at age 34, he continues this habit of looking away for a moment at the distance after reading or writing a page. He is a voracious reader and a novelist of speculative fiction. His vision is perfect. –Erik Peper
How come people in preliterate, hunting and gatherer, and agricultural societies tend to have better vision and very low rates of nearsightedness (Cordain et al, 2003)? The same appear true for people today who spent much of their childhood outdoors as compared to those who predominantly stay indoors. On the other hand, how come 85% of teenagers in Singapore are myopic (neasighted) and how come in the United States myopia rate have increased for children from 25% in the 1970s to 42% in 2000s (Bressler, 2020; Min, 2019)?

Why should you worry that your child may become nearsighted since it is easy correct with contacts or glasses? Sadly, in numerous cases, children with compromised vision and who have difficulty reading the blackboard may be labeled disruptive or having learning disability. The vision problems can only be corrected if the parents are aware of the vision problem (see https://www.covd.org/page/symptoms for symptoms that may be related to vision problems). In addition, glasses may be stigmatizing and children may not want to wear glasses because of vanity or the fear of being bullied.
The recent epidemic of near sightedness is paritally a result of disrespecting our evolutionary survival patterns that allowed us to survive and thrive. Throughout human history, people continuously alternated by looking nearby and at the distance. When looking up close, the extraocular muscles contract to converge the eyes and the ciliary muscles around the lens contract to increase the curvature of the lens so that the scene is in focus on the retina — this muscle tension creates near visual stress.
The shift from alternating between far and near vision to predominantly near vision and immobility

Figure 2. The traditional culture of Hdzabe men in Tanzania returning from a hunt. Notice how upright they walk and look at the far distance as compared to young people today who slouch and look predominantly at nearby screens.
Experience the effect of near visual stress.
Bring your arm in front of you and point your thumb up. Look at your thumb on the stretched out arm. Keep focusing on the thumb and slow bring the thumb four inches from your nose. Keep focusing on the thumb for a half minute. Drop the arm to the side, and look outside at the far distance.
What did you experience? Almost everyone reports feeling tension in the eyes and a sense of pressure inside around and behind their eyes. When looking at the distance, the tension slowly dissipates. For some the tension is released immediately while for others it may take many minutes before the tension disappears especially if one is older. Many adults experience that after working at the computer, their distant vision is more fuzzy and that it takes a while to return to normal clarity.
When the eyes focus at the distance, the ciliary muscles around lens relaxes so that the lens can flatten and the extra ocular muscles relax so that the eyes can diverge and objects in the distance are in focus. Healthy vision is the alternation between near and far focus– an automatic process by which the muscles of the eyes tightening and relax/regenerate.
Use develops structure and structure limits use
If we predominantly look at nearby surfaces, we increase near visual stress and the risk of developing myopia. As children grow, the use of their eyes will change the shape of the eyeball so that the muscles will have to contract less to keep the visual object into focus. If the eyes predominantly look at near objects, books, cellphones, tablets, toys, and walls in a room where there is little opportunity to look at the far distance, the eye ball will elongate and the child will more likely become near sighted. Over the last thirty year and escalated during COVID’s reside-in-place policies, children spent more and more time indoors while looking at screens and nearby walls in their rooms. Predominantly focusing on nearby objects starts even earlier as parents provide screens to baby and toddlers to distract and entertain them. The constant near vision remodels the shape of eye and the child will likely develop near sightedness.
Health risks of sightedness and focusing predominantly upon nearby objects
- Increased risk of get into an accident as we have reduced peripheral vision. In earlier times if you were walking in jungle, you would not survive without being aware of your peripheral vision. Any small visual change could indicate the possible presence food or predator, friend or foe. Now we focus predominantly centrally and are less aware of our periphery. Observe how your peripheral awareness decreases when you bring your nose to the screen to see more clearly. When outside and focusing close up the risk of accidents (tripping, being hit by cars, bumping into people and objects) significantly increases as shown in figure 3 and illustrated in the video clip.
Pedestrian accidents (head forward with loss of peripheral vision)

Figure 3. Injuries caused by cell phone use per year since the introduction of the smartphone (graphic from Peper, Harvey and Faass,2020; data source: Povolatskly et al., 2020).
- Myopia increases the risk of eye disorder. The risk for glaucoma, one the leading causes of blindness, is doubled (Susanna, De Moraes, Cioffi, & Ritch, R. 2015). The excessive tension around the eyes and ciliary muscles around the lens can interfere with the outflow of the excess fluids of the aqueous humour through the schlemm canal and may compromise the production of the aqueous humour fluid. These canals are complex vascular structures that maintains fluid pressure balance within the anterior segment of the eye. When the normal outflow is hindered it would contribute to elevated intraocular pressure and create high tension glaucoma (Andrés-Guerrero, García-Feijoo, & Konstas, 2017). Myopia also increases the risk for retinal detachment and tears, macular degeneration and cataract. (Williams & Hammond, 2019).
By learning to relax the muscles around the lens, eye and face and sensing a feeling of soft eyes, the restriction around the schlemm canals is reduced and the fluids can drain out easier and is one possible approach to reverse glaucoma (Dada et al., 2018; Peper, Pelletier & Tandy, 1979).
- Increase in neck and upper back compression when the person cranes their head forward or looks down while reading books/articles, looking at a cellphone or a laptop screen, This often results in an increase of back, neck and shoulder pain as well as headaches (Harvey, Peper, Booiman, Heredia Cedillo, & Villagomez, 2018; Hansraj, 2014).
- Decrease in subjective energy and increase in helpless, hopeless, powerless and defeated thoughts when the person habitually looks down in a slouched position (Peper, Booiman, Lin, & Harvey, 2016; Peper, Lin, Harvey, & Perez, 2017).
WHAT CAN YOU DO?
The solutions are remarkable simple. Respect your evolutionary background and allow your eyes to spontaneously alternate between looking at near and far objects while being upright (Schneider, 2016; Peper, 2021; Peper, Harvey & Faass, 2020).
For yourself and your child
- Let children play outside so that they automatically look far and near.
- When teaching children to read have them look at the distance at the end of every paragraph or page to relax the eyes.
- Limit screen time and alternate with outdoor activities
- Every 15 to 20 minutes take a vision break when reading or watching screens. Get up, wiggle around, move your neck and shoulders, and look out the window at the far distance.
- When looking at digital screens, look away every few minutes. As you look away, close your eyes for a moment and as you are exhaling gently open your eyes.
- Practice palming and relaxing the eyes. For detailed guidance and instruction see the YouTube video by Meir Schneider.
Create healthy eye programs in schools and work
- Arrange 30 minute lesson plans and in between each lesson plan take a vision and movement breaks. Have children get up from their desks and move around. If possible have them look out the window or go outside and describe the furthest object they can see such as the shape of clouds, roof line or details of the top of trees.
- Teach young children as they are learning reading and math to look away at the distance after reading a paragraph or finishing a math problem.
- Teach palming for children.
- During recess have students play games that integrate coordination with vision such as ball games.
- Episodically, have students close their eyes, breathe diaphragmatically and then as they exhale slowly open their eyes and look for a moment at the world with sleepy/dreamy eyes.
- Whenever using screen use every opportunity to look away at the distance and for a moment close your eyes and relax your neck and shoulders.
BOOKS TO OPTIMIZE VISION AND TRANSFORM TECHSTRESS INTO TECHHEALTH
Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement by Meir Schneider.
YOUTUBE PRESENTATION, Transforming Tech Stress into Tech Health.
ADDITIONAL BLOGS THAT FOCUS ON RESOLVING EYES STREAN AND TECHSTRESS
REFERENCES
Bressler, N.M. (2020). Reducing the Progression of Myopia. JAMA, 324(6), 558–559.
Peper, E. (2021). Resolve eyestrain and screen fatigue. Well Being Journal, 30(1), 24-28.
Schneider, M. (2019). YouTube video Free Webinar by Meir Schneider: May 6, 2019.
Williams, K., & Hammond, C. (2019). High myopia and its risks. Community eye health, 32(105), 5–6.
You heard it before. Now do it! Three tips to reduce screen fatigue
Posted: February 27, 2021 Filed under: behavior, ergonomics, Exercise/movement, health, Pain/discomfort, posture, relaxation, screen fatigue, Uncategorized, vision, zoom fatigue 2 CommentsMonica Almendras and Erik Peper

For almost a year, we have managed to survive this pandemic. As we work in front of screen many people experience screen fatigue (Bailenson, 2021). The tiredness, achiness and depressive feelings have many causes such as sitting disease, reduced social contact, constantly looking at the screen for work, education, socializing, and entertaining, and the increased stress from family illness and economic insecurity. The result is that many people experience low energy, depression, loneliness, anxiety, neck, shoulder, back pain at the end of the day (Son, Hegde, Smith, Wang, & Sasangohar, 2020; Peper & Harvey, 2018).
Yet there is hope to reduce discomfort and increase by implementing simple tips.
Take breaks and take more breaks by getting up from your chair and moving. Taking breaks helps us to clear our minds and it interrupts any ongoing rumination we may have going on. Doing this helps a person be more productive at work or when studying, and at the same time it helps retain more information (Peper, Harvey, & Faass, 2020; Kim, Park, & Headrick, 2018). How many of you reading this actually take a short break at least once during work? We stay in the same sitting position for long periods of time, even holding off to go to the restroom. We tell ourselves ‘one more minute’ or ‘I’ll just finish this and then I’ll go”. Sounds familiar? We know it is not healthy and yet, we continue doing it.
Solution: Set a reminder every twenty minutes to take a short break. Download a program on your computer that will remind you to take a break such as Stretch Break (www.stretchbreak.com). Every twenty minutes a window will pop up on your computer reminding you to stretch. It gives you simple exercises for you to move around and wiggle as shown in figure 1. You can say it breaks the spell from staying frozen in one position in front of your screen. The best part is that yet is free to download on your computer. What more can you ask for?

Figure 1. Stretch break window that pops up on your computer to remind you to stretch.
Stop slouching in front of the screen. We tend to gaze downwards to our device and slouch, which creates tension on our neck and shoulders ((Peper, Lin, Harvey, & Perez, 2017). And yet, we still wonder why people suffer from neck-shoulder pain and headaches. It is time to make a transformation from slouching and feeling aches and pains, to an upright posture to be free of pain.
Solution: Use an UpRight Go 2 device on your upper back or neck is a great way to remind you that you are slouching (Harvey, Peper, Mason, & Joy, 2020). The UpRight is linked via Bluetooth to the App on the mobile phone, and once you calibrate it to an upright posture, you will see and feel a vibrate when you slouch. For people who are on the computer for long hours, this will help you to be aware of your posture.
If wearing a small device on your back is not your cup of tea, or perhaps it is not in your budget at the moment. There is a solution for this, and that means you can download the UpRight Desktop App on your computer or laptop (Chetwynd, Mason, Almendras, Peper, & Harvey, 2020). The desktop version uses the camera from your computer or laptop to monitor your posture; however, at the camera cannot simultaneous be in use with another program such as ZOOM. This version provides immediate feedback through the graphic on the screen as well as, an adjustable auditory signal when you slouch as shown in Figure 2. It is also free to download, and it is available for PC and Mac (https://www.uprightpose.com/desktop-app/).

Figure 2. Posture feedback app. When slouching, the app provides immediate feedback through the graphic on the screen (the posture of figure turns red) and/or an adjustable auditory sound (from: Chetwynd, Mason, Almendras, Peper, & Harvey, 2020)
Relax your eyes and look away from the screen. Many people struggle with dry eyes and eyestrain from looking at the screen for extended time periods. We log out from work, meetings, and class; to staring at the television, tablets, and mobile phones on our free time. It is a nonstop cycle of looking at the screen, while our poor eyes never have a single break. To look at the screen, we tightened our extraocular muscles and ciliary muscles; and the result is near-vision stress (Peper, 2021).
SOLUTION: The solution to relax the eyes and reduce eyestrain will not be to buy new eyeballs online. Instead, here are three easy and free things to reestablish good eyeball health. These were adapted from the superb book, Vision for life: Ten steps for natural eyesight improvement, by Meir Schneider, PhD.
- Look out through a window at a distance tree for a moment after reading an email or clicking a link
- Look up at a distant tree and focus at the details of the branches and leaves each time you have finished a page from a book or eBook.
- Rest and regenerate your eyes with palming (Peper, 2021). To do palming, all you need to do is sit upright, place an object under your elbows (pillow or books) to avoid tensing the neck and shoulders, and cover the eyes with your hands (see figure 3). Cup your hands to avoid pressure on your eyes and with your eyes closed, imagine seeing blackness while breathing slowing from your diaphragm. For five minutes, feel how your shoulders, head, and eyes are relaxing, while doing six breaths per minutes through your nose. Once your five minutes are up, stretch or wiggle around before returning to your work. For detailed instructions, see the YouTube video, Free Webinar by Meir Schneider: May 6, 2019.

Figure 3. Position for palming.
Implement these tips as an experiment for a week and note how it affects you. Many people report that after three weeks, they experience less pain and more energy. By taking charge of your own computer work patterns, you have taken a first e first step into transforming your health.
REFERENCES
Bailenson, J. N. (2021). Nonverbal Overload: A Theoretical Argument for the Causes of Zoom Fatigue. Technology, Mind, and Behavior, 2(1). https://doi.org/10.1037/tmb0000030
Chetwynd, J., Mason, L., Almendras, M., Peper, E., & Harvey, R. (2020). “Posture awareness training.” Poster presented at the 51st Annual meeting of the Association for Applied Psychophysiology and Biofeedback. https://doi.org/10.13140/RG.2.2.20194.76485
Harvey, R., Peper, E., Mason, L., & Joy, M. (2020). “Effect of posture feedback training on health”. Applied Psychophysiology and Biofeedback. 45(3). https://DOI.org/10.1007/s10484-020-09457-0
Kim, S., Park, Y., & Headrick, L. (2018). Daily micro-breaks and job performance: General work engagement as a cross-level moderator. Journal of Applied Psychology, 103(7), 772–786. https://doi.org/10.1037/apl0000308
Peper, E. & Harvey, R. (2018). Digital addiction: increased loneliness, depression, and anxiety. NeuroRegulation. 5(1),3–8. doi:10.15540/nr.5.1.3 https://www.neuroregulation.org/article/view/18189/11842
Peper, E., Lin, I-M., Harvey, R., & Perez, J. (2017). How posture affects memory recall and mood. Biofeedback.45 (2), 36-41. https://doi.org/10.5298/1081-5937-45.2.01
Peper, E. (2021). “Resolve eyestrain and screen fatigue.” Well Being Journal,.30, Winter 2021 https://www.researchgate.net/publication/345123096_Resolve_Eyestrain_and_Screen_Fatigue
Schneider, M. (2019. YouTube video Free Webinar by Meir Schneidere: May 6, 2019.
Son. C., Hegde, S., Smith, A., Wang, X., & Sasangohar, F. (2020). Effects of COVID-19 on College Students’ Mental Health in the United States: Interview Survey Study. J Med Internet Res, 22(9):e21279 https://doi.org/10.2196/21279
Tips to Reduce Zoom Fatigue
Posted: November 15, 2020 Filed under: behavior, computer, digital devices, ergonomics, Exercise/movement, health, laptops, Neck and shoulder discomfort, Pain/discomfort, self-healing, stress management, Uncategorized, vision 1 CommentAdapted from the book, TechStress: How Technology
is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, by Erik Peper, Richard Harvey and Nancy Faass.






Peper, E., Harvey, R., & Faass, N. (2020), TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics. Berkeley, CA: North Atlantic Books.
Inna Khazan, PhD, interviews the authors of TechStress
Posted: August 18, 2020 Filed under: behavior, computer, digital devices, ergonomics, Evolutionary perspective, Exercise/movement, health, laptops, Neck and shoulder discomfort, Pain/discomfort, posture, stress management, Uncategorized, vision Leave a commentGo behind the screen and watch Inna Khazan, PhD, faculty member at Harvard Medical School and author of Biofeedback and mindfulness in everyday life: Practical solutions for improving your health and performance, interview Erik Peper, PhD and Richard Harvey, PhD. coauthors of the new book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics.
Dr. Inna Khazan interviews Dr. Erik Peper about his new book Tech Stress. We talk about some of the ways in which technology overuse affects our health and what we can do about it.
Dr. Inna Khazan interviews Dr. Rick Harvey about his new book Tech Stress, the way technology overuse can affect adults and children, and what we can do about it.
Resolve Eyestrain and Screen Fatigue
Posted: June 29, 2020 Filed under: Breathing/respiration, computer, digital devices, ergonomics, Exercise/movement, health, laptops, Neck and shoulder discomfort, Pain/discomfort, relaxation, stress management, Uncategorized, vision | Tags: blurry vision, computer vision syndrome, dry eyes, eyestrain, near vision stress, zoom fatigue 10 CommentsAdapted from: Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.
Forty percent of adults and eighty percent of teenagers report experiencing significant visual symptoms (eyestrain, blurry vision, dry eyes, headaches, and exhaustion) during and immediately after viewing electronic displays. These ‘technology-associated overuse’ symptoms are often labeled as digital eyestrain or computer vision syndrome (Rosenfield, 2016; Randolph & Cohn, 2017). Even our distant vision may be affected— after working in front of a screen for hours, the world looks blurry. At the same time, we may experience an increase in neck, shoulders and back discomfort. These symptoms increase as we spend more hours looking at computer screens, laptops, tablets, e-readers, gaming consoles, and cellphones for work, taking online classes, watching streaming videos for entertainment, and keeping connected with friends and family (Borhany et al, 2018; Turgut, 2018; Jensen et al, 2002).
Eye, head, neck, shoulder and back discomfort are partly the result of sitting too long in the same position and attending to the screen without taking short physical and vision breaks, moving our bodies and looking at far objects every 20 minutes or so. The obvious question is, “Why do we stare at and are captured by, the screen?” Two answers are typical: (1) we like the content of what is on the screen; and, (2) we feel compelled to watch the rapidly changing visual scenes.
From an evolutionary perspective, our sense of vision (and hearing) evolved to identify predators who were hunting us, or to search for prey so we could have a nice meal. Attending to fast moving visual changes is linked to our survival. We are unaware that our adaptive behaviors of attending to a visual or auditory signals activate the same physiological response patterns that were once successful for humans to survive–evading predictors, identifying food, and discriminating between friend or foe. The large and small screen (and speakers) with their attention grabbing content and notifications have become an evolutionary trap that may lead to a reduction in health and fitness (Peper, Harvey & Faass, 2020).
Near vision stress
To be able to see the screen, the eyes need to converge and accommodate. To converge, the extraocular muscles of the eyes tighten; to focus (accomodation), the ciliary muscle around the lens tighten to increase the curvature of the lens. This muscle tension is held constant as long as we look at the screen. Overuse of these muscles results is near vision stress that contributes to computer vision syndrome, development of myopia in younger people, and other technology-associated overuse syndromes (Sherwin et al, 2012; Enthoven et al, 2020).
Continually overworking the visual muscles related to convergences increases tension and contributes to eyestrain. While looking at the screen, the eye muscles seldom have the chance to relax. To function effectively, muscles need to relax /regenerate after momentary tightening. For the eye muscles to relax, they need to look at the far distance– preferably objects green in color. As stated earlier, the process of distant vision occurs by relaxing the extraocular muscles to allow the eyes to diverge along with relaxing the ciliary muscle to allow the lens to flatten. In our digital age, where screen of all sizes are ubiquitous, distant vision is often limited to the nearby walls behind a screen or desk which results in keeping the focus on nearby objects and maintaining muscular tension in the eyes.
As we evolved, we continuously alternated between between looking at the far distance and nearby areas for food sources as well as signals indicating danger. If we did not look close and far, we would not know if a predator was ready to attack us. Today we tend to be captured by the screens. Arguably, all media content is designed to capture our attention such as data entry tasks required for employment, streaming videos for entertainment, reading and answering emails, playing e-games, responding to text notifications, looking at Instagram and Snapchat photos and Tiktok videos, scanning Tweets and using social media accounts such as Facebook. We are unaware of the symptoms of visual stress until we experience symptoms. To illustrate the physiological process that covertly occurs during convergence and accommodation, do the following exercise.
Sit comfortably and lift your right knee a few inches up so that the foot is an inch above the floor. Keep holding it in this position for a minute…. Now let go and relax your leg.
A minute might have seemed like a very long time and you may have started to feel some discomfort in the muscles of your hip. Most likely, you observed that when you held your knee up, you most likely held your breath and tightened your neck and back. Moreover, to do this for more than a few minutes would be very challenging.
Lift your knee up again and notice the automatic patterns that are happening in your body.
For muscles to regenerate they need momentary relaxation which allows blood flow and lymph flow to occur. By alternately tensing and relaxing muscles, they can work more easily for longer periods of time without experiencing fatigue and discomfort (e.g., we can hike for hours but can only lift our knee for a few minutes).
Solutions to relax the eyes and reduce eye strain
- Reestablish the healthy evolutionary pattern of alternately looking at far and near distances to reduce eyestrain, such as:
- Look out through a window at a distant tree for a moment after reading an email or clicking link.
- Look up and at the far distance each time you have finished reading a page or turn the page over.
- Rest and regenerate your eyes with palming. While sitting upright, place a pillow or other supports under our elbows so that your hands can cover your closed eyes without tensing the neck and shoulders.
- Cup the hands so that there is no pressure on your eyeballs, allow the base of the hands to touch the cheeks while the fingers are interlaced and resting your forehead.
- Close your eyes, imagine seeing black. Breathe slowly and diaphragmatically while feeling the warmth of the palm soothing the eyes. Feel your shoulders, head and eyes relaxing. Palm for 5 minutes while breathing at about six breaths per minute through your nose. Then stretch and go back to work.
Palming is one of the many practices that improves vision. For a comprehensive perspective and pragmatic exercises to reduce eye strain, maintain and improve vision, see the superb book by Meir Schneider, PhD., L.M.T., Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement.
Increased sympathetic arousal
Seeing the changing stimuli on the screen evokes visual attention and increases sympathetic arousal. In addition, many people automatically hold their breath when they see novel visual or hear auditory signals; since, they trigger a defense or orienting response. At the same time, without awareness, we may tighten our neck and shoulder muscles as we bring our nose literally to the screen. As we attend and concentrate to see what is on the screen, our blinking rate decreases significantly. From an evolutionary perspective, an unexpected movement in the periphery could be a snake, a predator, a friend or foe and the body responds by getting ready: freeze, fight or flight. We still react the same survival responses. Some of the physiological reactions that occur include:
- Breath holding or shallow breathing. These often occur the moment we receive a text notification, begin concentrating and respond to the messages, or start typing or mousing. Without awareness, we activate the freeze, flight and fight response. By breath holding or shallow breathing, we reduce or limit our body movements, effectively becoming a non-moving object that is more difficult to see by many animal predators. In addition, during breath holding, hearing become more acute because breathing noises are effectively reduced or eliminated.
- Inhibition of blinking. When we blink it is another movement signal that in earlier times could give away our position. In addition, the moment we blink we become temporarily blind and cannot see what the predator could be doing next.
- Increased neck, shoulder and back tension. The body is getting ready for a defensive fight or avoidance flight.
Experience some of these automatic physiological responses described above by doing the following two exercises.
Eye movement neck connection: While sitting up and looking at the screen, place your fingers on the back of the neck on either side of the cervical spine just below the junction where the spine meets the skull.
Feel the muscles of neck along the spine where they are attaching to the skull. Now quickly look to the extreme right and then to the extreme left with your eyes. Repeat looking back and forth with the eyes two or three times.
What did you observe? Most likely, when you looked to the extreme right, you could feel the right neck muscles slightly tightening and when you looked the extreme left, the left neck muscles slightly tightening. In addition, you may have held your breath when you looked back and forth.
Focus and neck connection: While sitting up and looking at the screen, place your fingers on the back of the neck as you did before. Now focus intently on the smallest size print or graphic details on the screen. Really focus and concentrate on it and look at all the details.
What did you observe? Most likely, when you focused on the text, you brought your head slightly forward and closer to the screen, felt your neck muscles tighten, and possibly held your breath or started to breathe shallowly.
As you concentrated, the automatic increase in arousal, along with the neck and shoulder tension and reduced blinking contributes to developing discomfort. This can become more pronounced after looking at screens to detailed figures, numerical data, characters and small images for hours (Peper, Harvey & Tylova, 2006; Peper & Harvey, 2008; Waderich et al, 2013).
Staying alert, scanning and reacting to the images on a computer screen or notifications from text messages, can become exhausting. in the past, we scanned the landscape, looking for information that will help us survive (predators, food sources, friend or foe) however today, we react to the changing visual stimuli on the screen. The computer display and notifications have become evolutionary traps since they evoke these previously adaptive response patterns that allowed us to survive.
The response patterns occur mostly without awareness until we experience discomfort. Fortunately, we can become aware of our body’s reactions with physiological monitoring which makes the invisible visible as shown in the figure below (Peper, Harvey & Faass, 2020).
Representative physiological patterns that occur when working at a computer, laptop, tablet or cellphone are unnecessary neck and shoulder tension, shallow rapid breathing, and an increase in heart rate during data entry. Even when the person is resting their hands on the keyboard, forearm muscle tension, breathing and heart rate increased.
Moreover, muscle tension in the neck and shoulder region also increased, even when those muscles were not needed for data entry task. Unfortunately, this unnecessary tension and shallow breathing contributes to exhaustion and discomfort (Peper, Harvey & Faass, 2020).
With biofeedback training, the person can learn to become aware and control these dysfunctional patterns and prevent discomfort (Peper & Gibney, 2006; Peper et, 2003). However, without access to biofeedback monitoring, assume that you respond similarly while working. Thus, to prevent discomfort and improve health and performance, implement the following.
- Practice breathing lower and slower to reduce sympathetic activation. Every few minutes remember to breathe slowly in and out through the nose. See the following blogs for more detailed instructions:
- Blink many times. Blink each time you click on a link, after typing a paragraph or after entering a few numbers.
- Get up, move, stretch and wiggle.
- Every few minutes do a small movement such as rotating your shoulders, dropping your hands to your lap.
- Every twenty minutes get up, stretch and walk around to reduce the chronic muscle tension.
- Install the free Stretch Break software on your computer or laptop to remind you to stretch… and then shows you how. Download free version from: https://stretchbreak.com/.
- Use small portable muscle biofeedback devices to learn awareness of the covert muscle tension and how to work without unnecessary muscle tension. For detailed training procedures see the free downloadable book by Erik Peper and Katherine Gibney, Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training.
Finally, for a comprehensive overview based on an evolutionary perspective that explains why TechStress develops, why digital addiction occurs. and what can be done to prevent discomfort and improve health and performance, see our new book by Erik Peper, Richard Harvey and Nancy Faass, Tech Stress-How Technology is Hijack our Lives, Strategies for Coping and Pragmatic Ergonomics.
References
Peper, E. & Gibney, K. (2006). Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. The Biofeedback Federation of Europe. Download free PDF version of the book: http://bfe.org/helping-clients-who-are-working-from-home/
Schneider, M. (2016). Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement. Berkeley: North Atlantic Books. https://self-healing.org/shop/books/vision-for-life-2nd-ed
Turgut, B. (2018). Ocular Ergonomics for the Computer Vision Syndrome. Journal Eye and Vision, 1(2).