Reduce your risk of COVID-19 variants and future pandemics

Erik Peper, PhD and Richard Harvey, PhD

The number of hospitalizations and deaths from COVID-19 are decreasing as more people are being vaccinated. At the same time, herd immunity will depend on how vaccinated and unvaccinated people interact with one another. Close-proximity, especially indoor interactions, increases the likelihood of transmission of coronavirus for unvaccinated individuals.  During the summer months, people tend to congregate outdoors which reduces viral transmission and also increases vitamin D production which supports the immune system (Holick, 2021)..

Most likely, COVID-19 disease will become endemic because the SARS-CoV-2 virus will continue to mutate.  Already Pfizer CEO Albert Bourla stated on April 15, 2021 that  people will “likely” need a third dose of a Covid-19 vaccine within 12 months of getting fully vaccinated.  Although, at this moment the vaccines are effective against several variants, we need to be ready for the next COVID XX outbreak. 

To reduce future infections, the focus of interventions should 1) reduce virus exposure, 2) vaccinate to activate the immune system, and 3) enhance the innate immune system competence. The risk of illness may relate to virus density exposure and depend upon the individual’s immune competence (Gandhi & Rutherford, 2020; Mukherjee, 2020) which can be expressed in the following equation.

Reduce viral load (hazardous exposure)

Without exposure to the virus and its many variants, the risk is zero which is impossible to achieve in democratic societies.  People do not live in isolated bubbles but in an interconnected world and the virus does not respect borders or nationalities. Therefore, public health measures need to focus upon strategies that reduce virus exposure by encouraging or mandating wearing masks, keeping social distance, limiting social contact, and increasing fresh air circulation.

Wearing masks reduces the spread of the virus since people may shed viruses one or two days before experiencing symptoms (Lewis et al., 2021). When a person exhales through the mask, a good fitting N95 mask will filter out most of the virus and thereby reduce the spread of the virus during exhalation. To protect oneself from inhaling the virus, the mask needs be totally sealed around the face with the appropriate filters. Systematic observations suggest that many masks such as bandanas or surgical masks do not filter out the virus (Fisher et al., 2020).

Fresh air circulation reduces the virus exposure and is more important than the arbitrary 6 feet separation (CDC, May 13, 2021). If separated by 6 feet in an enclosed space, the viral particles in the air will rapidly increase even when the separation is 10 feet or more. On the other hand, if there is sufficient fresh air circulation, even three feet of separation would not be a problem. The spatial guidelines need to be based upon air flow and not on the distance of separation as illustrated in the outstanding graphical modeling schools by Nick Bartzokas et al. (February 26, 2021) in the New York Times article, Why opening windows is a key to reopening schools.

The public health recommendations of sheltering-in-place to prevent exposure or spreading the  virus may also result in social isolation. Thus, shelter-in-place policies have resulted in compromising physical health such as weight gain (e.g. average increase of more than 7lb in weight  in America according to Lin et al., 2021), reduced physical activity and exercise levels (Flanagan et al., 2021) and increased anxiety and depression (e.g. a three to four fold increase in the self-report of anxiety or depression according to Abbott, 2021).  Increases in weight, depression and anxiety symptoms tend to decrease immune competence (Leonard, 2010). In addition, the stay at home recommendations especially in the winter time meant that individuals  are less exposed to sunlight which results in lower vitamin D levels which is correlated with increased COVID-19 morbidity (Seheult, 2020).

Increase immune competence

Vaccination is the primary public health recommendation to prevent the spread and severity of COVID-19. Through vaccination, the body increases its adaptive capacity and becomes primed to respond very rapidly to virus exposure. Unfortunately, as Pfizer Chief Executive Albert Bourla states, there is “a high possibility” that emerging variants may eventually render the company’s vaccine ineffective (Steenhuysen, 2021). Thus, it is even more important to explore strategies to enhance immune competence independent of the vaccine.

Public Health policies need to focus on intervention strategies and positive health behaviors that optimize the immune system capacity to respond.  The research data has been clear that COVID -19 is more dangerous for those whose immune systems are compromised and have comorbidities such as diabetes and cardiovascular disease, regardless of age.  

Comorbidity and being older are the significant risk factors that contribute to COVID-19 deaths. For example, in evaluating all patients in the Fair Health National Private Insurance Claims (FH NPIC’s) longitudinal dataset, researchers identified 467,773 patients diagnosed with COVID-19 from April 1, 2020, through August 31, 2020.  The severity of the illness and death from COVID-19 depended on whether the person had other co-morbidities first as shown in Figure 1.

Figure 1. The distribution of patients with and without a comorbidity among all patients diagnosed with COVID-19 (left) and all deceased COVID-19 patients (right) April-August 2020. Reproduced by permission from: https://www.ajmc.com/view/contributor-links-between-covid-19-comorbidities-mortality-detailed-in-fair-health-study

Each person who died had about 2 or 3 types of pre-existing co-morbidities such as cardiovascular disease, hypertension, diabetes, obesity, congestive heart failure, chronic kidney disease, respiratory disease and cancer (Ssentongo et al., 2020; Gold et al., 2020). The greater the frequency of comorbidities the greater the risk of death, as shown in Figure 2.

Figure 2.  Across all age groups, the risk of COVID-19 death increased significantly as a patient’s number of comorbidities increased. Compared to patients with no comorbidities.  Reproduced by permission from https://s3.amazonaws.com/media2.fairhealth.org/whitepaper/asset/Risk%20Factors%20for%20COVID-19%20Mortality%20among%20Privately%20Insured%20Patients%20-%20A%20Claims%20Data%20Analysis%20-%20A%20FAIR%20Health%20White%20Paper.pdf

Although the risk of serious illness and death is low for young people, the presence of comorbidity increases the risk. Kompaniyets et al. (2021) reported that for patients under 18 years with severe COVID-19 illness who required ICU admission, mechanical ventilation, or died most had underlying medical conditions such as asthma, neurodevelopmental disorders, obesity, essential hypertension or complex chronic diseases such as malignant neoplasms or multiple chronic conditions.

Consistent with earlier findings, the Fair Health National Private Insurance Claims (FH NPIC’s) longitudinal dataset also showed that  the COVID-19 mortality rate rose sharply with age as shown in Figure 3.

Figure 3  Percent mortality among COVID-19 patients by age, April-August 2020. Reproduced by permission from: https://s3.amazonaws.com/media2.fairhealth.org/whitepaper/asset/Risk%20Factors%20for%20COVID-19%20Mortality%20among%20Privately%20Insured%20Patients%20-%20A%20Claims%20Data%20Analysis%20-%20A%20FAIR%20Health%20White%20Paper.pdf

Optimize antibody response from vaccinations

Assuming that the immune system reacts similarly to other vaccinations, higher antibody response is evoked when the vaccine is given in the morning versus the afternoon or after exercise (Long et al., 2016; Long et al., 2012).  In addition, the immune response may be attenuated if the person suppresses the body’s natural immune response–the flulike symptoms which may occur after the vaccination–with Acetaminophen (Tylenol (Graham et al, 1990).

Support the immune system with a healthy life style

Support the immune system by implementing a lifestyle that reduces the probability of developing comorbidities.  This means reducing risk factors such as vaping, smoking, immobility and highly processed foods. For example, young people who vape experience a fivefold increase to become seriously sick with COVID-19 (Gaiha, Cheng, & Halpern-Felsher, 2020); similarly, cigarette smoking increases the risk of COVID morbidity and mortality (Haddad, Malhab, & Sacre, 2021).  

There are many factors that have contributed to the epidemic of obesity, diabetes, cardiovascular disease and other chronic diseases.  In many cases, the environment and lifestyle factors (lack of exercise, excessive intake of highly processed foods, environmental pollution, social isolation, stress, etc.) significantly contribute to the initiation and development of comorbidities. Genetics also is a factor; however, the generic’s risk factor may not be triggered if there are no environmental/behavioral exposures.  Phrasing it colloquially, Genetics loads the gun, environment and behavior pulls the trigger. Reducing harmful lifestyle behaviors and environment is not simply an individual’s responsibility but a corporate and governmental responsibility. At present, harmful lifestyles choices are actively supported by corporate and government policies that choose higher profits over health.  For example, highly processed foods made from corn, wheat, soybeans, rice are grown by farmers with US government farm subsidies. Thus, many people especially of lower economic status live in food deserts where healthy non-processed organic fruits and vegetable foods are much  less available and more expensive (Darmon & Drewnowski, 2008; Michels, Vynckier, Moreno, L.A. et al.  2018; CDC, 2021).   In the CDC National Health and Nutrition Examination Survey that analyzed the diet of 10,308 adults, researchers Siegel et al. (2016) found that “Higher consumption of calories from subsidized food commodities was associated with a greater probability of some cardiometabolic risks” such as higher levels of obesity and unhealthy blood glucose levels (which raises the risk of Type 2 diabetes).

Immune competence is also affected by many other factors such as  exercise, stress, shift work, social isolation, and reduced micronutrients and Vitamin D (Zimmermann & Curtis, 2019).   Even being sedentary increases the risk of dying from COVID as reported by the Kaiser Permanente Southern California study of 50,000 people who developed COVID (Sallis et al., 2021). 

People who exercised 10 minutes or less each week were hospitalized twice as likely and died 2.5 times more than people who exercised 150 minutes a week (Sallis et al., 2021).  Although exercise tends to enhance immune competence (da Silveira et al, 2020), it is highly likely that exercise is a surrogate marker for other co-morbidities such as obesity and heart disease as well as aging.  At the same time sheltering–in-place along with the increase in digital media has significantly reduced physical activity. 

The importance of vitamin D

Low levels of vitamin D is correlated with poorer prognosis for patients with COVID-19 (Munshi et al., 2021). Kaufman et al. (2020) reported that the positivity rate correlated inversely with vitamin D levels  as shown in figure 4.

Figure 4. SARS-CoV-2 NAAT positivity rates and circulating 25(OH)D levels in the total population.  From: Kaufman, H.W., Niles, J.K., Kroll, M.H., Bi, C., Holick, M.F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 15(9):e0239252. https://doi.org/10.1371/journal.pone.0239252

Vitamin D is a modulator for the immune system (Baeke, Takiishi, Korf, Gysemans, & Mathieu, 2010).  There is an inverse correlation of all-cause, cardiovascular, cancer, and respiratory disease mortality with hydroxyvitamin D concentrations in a large cohort study (Schöttker et al., 2013). For a superb discussion about how much vitamin D is needed, see the presentation, The D-Lightfully Controversial Vitamin D: Health Benefits from Birth until Death, by Dr. Michael F. Holick, Ph.D., M.D. from the University Medical Center Boston.

Low vitamin D levels may partially explain why in the winter there is an increase in influenza. During winter time, people have reduced sunlight exposure so that their skin does not produce enough vitamin D. Lower levels of vitamin D may be a cofactor in the increased rates of COVID among people of color and older people. The darker the skin, the more sunlight the person needs to produce Vitamin D and as people become older their skin is less efficient in producing vitamin D from sun exposure (Harris, 2006; Gallagher, 2013).  Vitamin D also moderates macrophages by regulating the release, and the over-release of inflammatory factors in the lungs (Khan et al., 2021).

Watch the interesting presentation by Professor Roger Seheult, MD, UC Riverside School of Medicine, Vitamin D and COVID 19: The Evidence for Prevention and Treatment of Coronavirus (SARS CoV 2). 12/20/2020. https://www.youtube.com/watch?v=ha2mLz-Xdpg

What can be done NOW to enhance immune competence?

We need to recognize that once the COVID-19 pandemic has passed, it does not mean it is over.  It is only a reminder that a new COVID-19 variant or another new virus will emerge in the future.  Thus, the government public health policies need to focus on promoting health over profits and aim at strategies to prevent the development of chronic illnesses that affect immune competence. One take away message is to incorporate behavioral medicine prescriptions supporting a healthy lifestyle  into treatment plans, such as prescribing a walk in the sun to increase vitamin D production and develop dietary habits of eating organic locally grown vegetable and fruits foods.  Even just reducing the refined sugar content in foods and drinks is challenging although it may significantly reduce incidence and prevalence of obesity and diabetes (World Health Organization, 2017. The benefits of such an approach has been clearly demonstrated by the Pennsylvania-based Geisinger Health System’s  Fresh Food Farmacy. This program for food-insecure people with Type 2 diabetes and their families provides enough fresh fruits and vegetables, whole grains, and lean proteins for two healthy meals a day five days a week. After one year there was a 40 percent decrease in the risk of death or serious complications and an 80 percent drop in medical costs per year (Brody, 2020).

The simple trope of this article ‘eat well, exercise and get good rest’ and increase your immune competence concludes with some simple reminders. 

  • Increase availability of organic foods since they do not contain pesticides such as glyphosate residue that reduce immune competence.
  • Increase vegetable and fruits and reduce highly processed foods, simple carbohydrates and sugars.
  • Decrease sitting and increase movement and exercise
  • Increase sun exposure without getting sunburns
  • Master stress management
  • Increase social support

For additional information see: https://peperperspective.com/2020/04/04/can-you-reduce-the-risk-of-coronavirus-exposure-and-optimize-your-immune-system/

References

Abbott, A. (2021). COVID’s mental-health toll: Scientists track surge in depression. Nature, 590, 19-195.

Bartzokas, N., Gröndahl,  M., Patanjali, K,  Peyton, M.,Saget, B., & Syam, U. (February 26, 2021). Why opening windows is a key to reopening schools. The New York Times. Downloaded March 1, 2021.

Baeke, F., Takiishi, T., Korf,  H., Gysemans, C., & Mathieu, C. (2010). Vitamin D: modulator of the immune system,Current Opinion in Pharmacology,10(4), 482-496. https://doi.org/10.1016/j.coph.2010.04.001

Brody, J. (2020). How Poor Diet Contributes to Coronavirus Risk. The New York Times, April 20, 2020. https://www.nytimes.com/2020/04/20/well/eat/coronavirus-diet-metabolic-health.html?referringSource=articleShare

CDC. (2021). Adult Obesity Prevalence Maps. Centers for Disease Control and Prevention. https://www.cdc.gov/obesity/data/prevalence-maps.html#nonhispanic-white-adults

CDC. (May 13, 2021). Ways COVID-19 Spreads. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html

Darmon, N. & Drewnowski, A. (2008). Does social class predict diet quality?, The American Journal of Clinical Nutrition, 87(5), 2008, 1107–1117. https://doi.org/10.1093/ajcn/87.5.1107

da Silveira, M. P., da Silva Fagundes, K. K., Bizuti, M. R., Starck, É., Rossi, R. C., & de Resende E Silva, D. T. (2021). Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clinical and experimental medicine21(1), 15–28. https://doi.org/10.1007/s10238-020-00650-3

Elflein, J. (2021). COVID-19 deaths reported in the U.S. as of January 2, 2021, by age.  Downloaded, 1/13/2021 from  https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/

Fisher, E. P., Fischer, M.C., Grass, D., Henrion, I., Warren, W.S., & Westmand, E. (2020). Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Science Advance, (6) 36, eabd3083. https://doi.org/10.1126/sciadv.abd3083

Flanagan. E.W., Beyl, R.A., Fearnbach, S.N., Altazan, A.D., Martin, C.K., & Redman, L.M. (2021). The Impact of COVID-19 Stay-At-Home Orders on Health Behaviors in Adults. Obesity (Silver Spring),  (2), 438-445. https://doi.org/10.1002/oby.23066

Gaiha, S.M., Cheng, J., & Halpern-Felsher, B. (2020). Association Between Youth Smoking, Electronic Cigarette Use, and COVID-19. Journal of Adolescent Health, 67(4), 519-523. https://doi.org/10.1016/j.jadohealth.2020.07.002

Gallagher J. C. (2013). Vitamin D and aging. Endocrinology and metabolism clinics of North America42(2), 319–332. https://doi.org/10.1016/j.ecl.2013.02.004

Gandhi, M. & Rutherford, G. W. (2020). Facial Masking for Covid-19 — Potential for “Variolation” as We Await a Vaccine.  New England Journal of Medicine, 383(18), e101 https://www.nejm.org/doi/full/10.1056/NEJMp2026913

Gold, M.S., Sehayek, D., Gabrielli, S., Zhang, X., McCusker, C., & Ben-Shoshan, M. (2020). COVID-19 and comorbidities: a systematic review and meta-analysis. Postgrad Med, 132(8), 749-755. https://doi.org/10.1080/00325481.2020.1786964

Graham, N.M., Burrell, C.J., Douglas, R.M., Debelle, P., & Davies, L. (1990).  Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers. J Infect Dis., 162(6), 1277-82. https://doi.org/10.1093/infdis/162.6.1277

Haddad, C., Malhab, S.B., & Sacre, H. (2021). Smoking and COVID-19: A Scoping Review. Tobacco Use Insights, 14, First Published February 15, 2021. https://doi.org/10.1177/1179173X21994612

Harris, S.S. (2006). Vitamin D and African Americans. The Journal of Nutrition, 136(4), 1126-1129. https://doi.org/10.1093/jn/136.4.1126

Kaufman, H.W., Niles, J.K., Kroll, M.H., Bi, C., Holick, M.F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 15(9):e0239252. https://doi.org/10.1371/journal.pone.0239252

Khan, A. H., Nasir, N., Nasir, N., Maha, Q., & Rehman, R. (2021). Vitamin D and COVID-19: is there a role?. Journal of Diabetes & Metabolic Disorders, 1-8. https://doi.org/10.1007/s40200-021-00775-6

Kompaniyets, L., Agathis, N.T., Nelson, J.M., et al. (2021). Underlying Medical Conditions Associated With Severe COVID-19 Illness Among Children. JAMA Netw Open.  4(6):e2111182. https://doi.org/10.1001/jamanetworkopen.2021.11182

Leonard B. E. (2010). The concept of depression as a dysfunction of the immune system. Current immunology reviews6(3), 205–212. https://doi.org/10.2174/157339510791823835

Lewis, N. M., Duca, L. M., Marcenac, P., Dietrich, E. A., Gregory, C. J., Fields, V. L….Kirking, H. L. (2021). Characteristics and Timing of Initial Virus Shedding in Severe Acute Respiratory Syndrome Coronavirus 2, Utah, USA. Emerging Infectious Diseases27(2), 352-359. https://doi.org/10.3201/eid2702.203517

Lin, A.L., Vittinghoff, E., Olgin, J.E., Pletcher, M.J., & Marcus, G.M. (2021). Body Weight Changes During Pandemic-Related Shelter-in-Place in a Longitudinal Cohort Study. JAMA Netw Open, 4(3):e212536. doi:10.1001/jamanetworkopen.2021.2536

Long, J.E., Drayson, M.T., Taylor, A.E., Toellner, K.M., Lord, J.M., & Phillips, A.C. (2016).  Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine, 34(24), 2679-85. https://doi.org/10.1016/j.vaccine.2016.04.032.

Long. J.E., Ring, C., Drayson, M., Bosch, J., Campbell, J.P., Bhabra, J., Browne, D., Dawson, J., Harding, S., Lau, J., & Burns, V.E. (2012). Vaccination response following aerobic exercise: can a brisk walk enhance antibody response to pneumococcal and influenza vaccinations? Brain Behav Immun., 26(4), 680-687.  https://doi.org/10.1016/j.bbi.2012.02.004

Merelli, A. (2021, February 2). Pfizer’s Covid-19 vaccine is set to be one of the most lucrative drugs in the world. QUARTZ. https://qz.com/1967638/pfizer-will-make-15-billion-from-covid-19-vaccine-sales/

Michels, N., Vynckier, L., Moreno, L.A. et al. (2018). Mediation of psychosocial determinants in the relation between socio-economic status and adolescents’ diet quality. Eur J Nutr, 57, 951–963. https://doi.org/10.1007/s00394-017-1380-8

Mukherjee, S. (2020). How does the coronavirus behave inside a patient? We’ve counted the viral spread across peoples; now we need to count it within people. The New Yorker, April 6, 2020. https://www.newyorker.com/magazine/2020/04/06/how-does-the-coronavirus-behave-inside-a-patient?utm_source=onsite-share&utm_medium=email&utm_campaign=onsite-share&utm_brand=the-new-yorker

Munshi, R., Hussein, M.H., Toraih, E.A., Elshazli, R.M., Jardak, C., Sultana, N., Youssef, M.R., Omar, M., Attia, A.S., Fawzy, M.S., Killackey, M., Kandil, E., & Duchesne, J. (2020) Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol, 93(2), 733-740. https://doi.org/10.1002/jmv.26360

Renoud. L, Khouri, C., Revol, B., et al. (2021) Association of Facial Paralysis With mRNA COVID-19 Vaccines: A Disproportionality Analysis Using the World Health Organization Pharmacovigilance Database. JAMA Intern Med. Published online April 27, 2021. https://doi.org/10.1001/jamainternmed.2021.2219

Sallis, R., Young, D. R., Tartof, S.Y., et al. (2021). Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. British Journal of Sports Medicine.  Published Online First: 13 April 2021http://dx.doi.org/10.1136/bjsports-2021-104080

Schöttker, B., Haug, U., Schomburg, L., Köhrle, L., Perna, L., Müller. H., Holleczek, B., & Brenner. H. (2013). Strong associations of 25-hydroxyvitamin D levels with all-cause, cardiovascular, cancer and respiratory disease mortality in a large cohort study. American Journal of Clinical Nutrition, 97(4), 782–793 2013; https://doi.org/10.3945/ajcn.112.047712

Siegel, K.R., McKeever Bullard, K., Imperatore. G., et al. (2016). Association of Higher Consumption of Foods Derived From Subsidized Commodities With Adverse Cardiometabolic Risk Among US Adults. JAMA Intern Med. 176(8), 1124–1132. https://doi.org/10.1001/jamainternmed.2016.2410

Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM (2020) Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS ONE 15(8): e0238215. https://doi.org/10.1371/journal.pone.0238215

Steenhuysen, J. 2021, Jan 30). Fresh data show toll South African virus variant takes on vaccine efficacy. Accessed January 31, 2021. https://www.reuters.com/article/us-health-coronavirus-vaccines-variant/fresh-data-show-toll-south-african-virus-variant-takes-on-vaccine-efficacy-idUSKBN29Z0I7

World Health Organization. (2017). Sugary drinks1 – a major contributor to obesity and diabetes. WHO/NMH/PND/16.5 Rev. https://apps.who.int/iris/bitstream/handle/10665/260253/WHO-NMH-PND-16.5Rev.1-eng.pdf?sequence=1

Zimmermann, P. & Curtis, N. (2019). Factors That Influence the Immune Response to Vaccination. Clinical Microbiology Reviews, 32(2), 1-50.  https://doi.org/10.1128/CMR.00084-18


Useful resources about breathing, phytonutrients and exercise

Dysfunctional breathing, eating highly processed foods, and lack of movement contribute to development of illnesses such as cancer, diabetes, cardiovascular disease and many chronic diseases.  They also contributes to immune dysregulation that increases vulnerability to infectious diseases, allergies and autoimmune diseases. If you wonder what breathing patterns optimize health, what foods have the appropriate phytonutrients to support your immune system, or what the evidence is that exercise reduces illness and promotes longevity, look at the following resources.

Breath: the mind-body connector that underlies health and illness

Read the outstanding article by Martin Petrus (2021). How to breathe.

https://psyche.co/guides/how-to-breathe-your-way-to-better-health-and-transcendence

You are the food you eat

Watch the superb webinar presentation by Deanna Minich, MS., PHD., FACN, CNS, (2021) Phytonutrient Support for a Healthy Immune System.

Movement is life

Explore the summaries of recent research that has demonstrated the importance of exercise to increase healthcare saving and reduce hospitalization and death.


Reactivate your second heart

Monica Almendras and Erik Peper

Have you ever wondered why after driving long distances or sitting in a plane for hours your feet and lower leg are slightly swollen (Hitosugi, Niwa, & Takatsu, 2000)? It is the same process by which soldiers standing in attention sometimes faint or why salespeople or cashiers, especially those who predominantly stand most of the day, have higher risk of developing varicose veins.  By the end of the day, they feel that their legs being heavy and tired?  In the vertical position, gravity is the constant downward force that pools venous blood and lymph fluid in the legs. The pooling of the blood and reduced circulation is a contributing factor why airplane flights of four or more hours increases the risk for developing blood clots-deep vein thrombosis (DVT) (Scurr, 2002; Kuipers et al., 2007).  When blood clots reaches the lung, they can cause a pulmonary embolisms that can be fatal. In other cases, they may even travel to the brain and cause strokes.[1]  

Sitting without moving the leg muscles puts additional stress on your heart, as the blood and lymph pools in the legs. Tightening and relaxing the calf muscles can prevent the pooling of the blood.  The inactivity of your calf muscles does not allow the blood to flow upwards. The episodic contractions of the calf muscles squeezes the veins and pumps the venous blood upward towards the heart as illustrated in figure 1.  Therefore, it is important to stand, move, and walk so that your calf muscle can act as a second heart (Prevosti, April 16, 2020). 

Figure 1. Your calf muscles are your second heart! The body is engineered so that when you walk, the calf muscles pump venous blood back toward your heart. Reproduced by permission from Dr. Louis Prevosti of the Center for Vein Restoration (https://veinatlanta.com/your-second-heart/).

To see the second heart in action watch the YouTube video, Medical Animation Movie on Venous Disorders, by the Sigvaris Group Europe (2017).

If you stand too long and experienced slight swelling of the legs, raise your feet slightly higher than the head, to help drain the fluids out of the legs.  Another way to reduce pooling of fluids  and prevent blood clots and edema is to wear elastic stockings or wrap the legs with intermittent pneumatic compression (IPC) devices that periodically compresses the leg (Zhao et al., 2014). You can also do this by performing foot rotations or other leg and feet exercises. The more the muscle of the legs and feet contract and relax, the more are the veins episodically compressed which increases venous blood return.  Yet in our quest for efficiency and working in front of screens, we tend to sit for long time-periods.

Developing sitting disease

Have you noticed how much of the time you sit during the day? We sit while studying, working, socializing and entertaining in front of screens. This sedentary behavior has significantly increased during the pandemic (Zheng et al, 2010). Today, we do not need to get up because we call on Amazon’s Alexa, Apple’s Siri or Google’s Hey Google to control timers, answer queries, turn on the lights, fan, TV, and other home devices. Everything is at our fingertips and we have finally become The Jetsons without the flying cars (an American animated sitcom aired in the 1960s). There is no need to get up from our seat to do an activity. Everything can be controlled from the palm of our hand with a mobile phone app. 

With the pandemic, our activities involve sitting down with minimum or no movement at all. We freeze our body’s position in a scrunch–a turtle position–and then we wonder why we get neck, shoulder, and back pains–a process also observed in young adults or children. Instead of going outside to play, young people sit in front of screens. The more we sit and watch screens, the poorer is our mental and physical health (Smith et al., 2020Matthews et al., 2012). We are meant to move instead of sitting in a single position for eight or more hours while fixating our attention on a screen.

The visual stimuli on screen captures our attention, whether it is data entry, email, social media, or streaming videos (Peper, Harvey & Faass, 2020).  While at the computer, we often hold up our index finger on the mouse and wait with baited breath to react.  Holding this position and waiting to click may look harmless; however, our right shoulder is  often elevated and raised upward towards our ear. This bracing pattern is covert and contributes to the development of discomfort. The moment your muscles tighten, the blood flow through the muscle is reduced (Peper, Harvey, & Tylova, 2006). Muscles are most efficient when they alternately tighten and relax. It is no wonder that our body starts to scream for help when feeling pain or discomfort on our neck, shoulders, back and eyes.

Why move?

Figure 2a and 2b Move instead of sit (photos source: Canva.com).

The importance of tightening and then relaxing muscles is illustrated during walking.  During the swing phase of walking, the hip flexor muscles relax, tighten, relax again, tighten again, and this is repeated until the destination is reached. It is important to relax the muscles episodically for blood flow to bring nutrients to the tissue and remove the waste product.  Most people can walk for hours; however, they can only lift their foot from the floor (raise their leg up for a few minutes) till discomfort occurs. 

Movement is what we need to do and play is a great way to do it. Dr. Joan Vernikos (2016) who conducted seminal studies in space medicine and inactivity physiology investigated why astronauts rapidly aged in space and lost muscle mass, bone density and developed a compromised immune system. As we get older, we are hooked on sitting, and this includes the weekends too. If you are wondering how to separate from your seat, there are ways to overcome this. In the research to prevent the deterioration caused by simulating the low gravity experience of astronauts, Dr. Joan Vernikos (2021) had earthbound volunteers lie down with the head slightly lower than the feet on a titled bed. She found that standing up from lying down every 30-minutes was enough to prevent the deterioration of inactivity, standing every hour was not enough to reverse the degeneration.  Standing stimulated the baroreceptors in the neck and activated a cardiovascular response for optimal health (Vernikos, 2021).

We have forgotten something from our evolutionary background and childhood, which is to play and move around.  When children move around, wiggle, and contort themselves in different positions, they maintain and increase their flexibility. Children can jump and move their arms up, down, side to side, forward, and backward. They do this every day, including the weekends.

When was the last time you played with a child or like a child? As an adult, we might feel tired to play with a child and it can be exhausting after staring at the screen all day. Instead of thinking of being tired to play with your child, consider it as a good workout. Then you and your child bond and hopefully they will also be ready for a nap. For you, not only do you move around and wake up those muscles that have not worked all day, you also relax the tight muscles, stretch and move your joints. Do playful activities that causes the body to move in unpredictable fun ways such as throwing a ball or roleplaying being a different animal. It will make both of you smile–smiling helps relaxation and rejuvenates your energy.

It is not how much exercise you do, it is how long you sit.  The longer you sit without activating your second heart the more are you at risk for cardiovascular disease and diabetes independent of how much exercise you do (Bailey et al., 2019).

Use it or lose it! Activate your calves!

  • Interrupt sitting at your desk/computer every 30-minutes by getting up and walking around.
  • Stand up and walk around when using your phone.
  • Organize walking meetings instead of sitting around a table.
  • Invest in a sit-stand desk while working at the computer.  While working, alternate positions. There should be a balance between standing and sitting, because too much of one can lead to problems. By taking a short standing up break to let your blood pump back to the heart is beneficial to avoid health problems. Exercise alone, a fancy new ergonomic chair or expensive equipment is not enough to be healthy, it is important to add those mini breaks in between (Buckley et al, 2015).

For a holistic perspective to stay healthy while working with computers and cellphones, see the comprehensive book by Peper, Harvey and Faass (2020), TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics.

References

Bailey, D.P., Hewson, D.J., Champion, R.B., & Sayegh, S.M. (2019). Sitting Time and Risk of Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis, American Journal of Preventive Medicine, 57(3), 408-416.

Buckley, J.P., Hedge, A., Yates, T., et al. (2015). The sedentary office: an expert statement on the growing case for change towards better health and productivity British Journal of Sports Medicine, 49, 1357-1362.

Hitosugi, M., Niwa, M., & Takatsu, A. (2000). Rheologic changes in venous blood during prolonged sitting. Thromb Res.,100(5), 409–412.

Kuipers, S., Cannegieter, S.C., Middeldorp, S., Robyn, L., Büller, H.R., & Rosendaal, F.R. (2007) The Absolute Risk of Venous Thrombosis after Air Travel: A Cohort Study of 8,755 Employees of International Organisations, PLoS Med 4(9): e290.

Mahase, E. (2021). Covid-19: Unusual blood clots are “very rare side effect” of Janssen vaccine, says EMA. BMJ: 373:n1046. 

Matthews, C.E., George, S.M., Moore, S.C., et al. (2012). Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr, 95(2), 437-445. 

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Harvey, R. & Tylova, H. (2006). Stress protocol for assessing computer related disorders.  Biofeedback. 34(2), 57-62.

Prevosti, L. (2020, April 16). Your second heart. https://veinatlanta.com/your-second-heart/

Scurr, J.H. (2002). Travellers’ thrombosis. Journal of the Royal Society for the Promotion of Health, 122(1):11-13.

SIGVARIS GROUP Europe. (2017). Medical Animation Movie on Venous Disorders / SIGVARIS GROUP. [Video]. YouTube.

Smith, L., Jacob, L., Trott, M., Yakkundi, A., Butler, L., Barnett, Y., Armstrong, N. C., McDermott, D., Schuch, F., Meyer, J., López-Bueno, R., Sánchez, G., Bradley, D., & Tully, M. A. (2020). The association between screen time and mental health during COVID-19: A cross sectional study. Psychiatry research292, 113333.

Vernikos, J. (2016). Designed to Move: The Science-Backed Program to Fight Sitting Disease and Enjoy Lifelong Health.  Fresno, CA: Quill Driver Books.

Vernikos, J. (2021, February 25). Much ado about standing. Virtual Ergonomic Summit. American Posture Institute. https://api.americanpostureinstitute.com/virtual-ergonomics-summit-free-ticket?r_done=1

Zhao, J.M., He, M.L., Xiao,  Z.M., Li,  T.S., Wu,  H., & Jiang,  H. (2014).  Different types of intermittent pneumatic compression devices for preventing venous thromboembolism in patients after total hip replacement. Cochrane Database of Systematic Reviews, 12. Art. No.: CD009543.

Zheng, C., Huang, W.Y., Sheridan, S., Sit, C.H.-P., Chen, X.-K., Wong, S.H.-S. (2020). COVID-19 Pandemic Brings a Sedentary Lifestyle in Young Adults: A Cross-Sectional and Longitudinal Study. Int. J. Environ. Res. Public Health. 17, 6035.


[1] We even wonder if excessive sitting during the COVID-19 pandemic is a hidden risk factor of the rare negative side effects of blood clots in the brain, that can occur with the  AstraZeneca and Johnson and Johnson coronavirus vaccine (Mahase, 2021).


Simple acts of kindness

As we emerge from the COVID pandemic and look forward to the New Year, we can bring joy and happiness though through simple acts of kindness. 


There is hope in these crazy times—three inspirational TED talks

I just received an email from the Rick Hansen Foundation that inspired me to share its recommendations. In 1957 at the age of 15, Rick Hansen injured his spinal cord and was paralyzed from the waist down. He is an inspiration for all of us. In these crazy times of sheltering in place, experiencing social isolation, anxiety, depression, racial bias, and also happiness and joy, he recommends the following TED talks to increase resilience, overcome racial bias, and achieve self-acceptance. Enjoy watching the talks as they suggest strategies to deal with adversity and offer hope for the New Year.
3 Secrets of resilient people by Dr. Lucy Hone, Co-director of the New Zealand Institute of Wellbeing & Resilience and adjunct fellow at the University of Canterbury in Christchurch, New Zealand.

How racial bias works-and how to disrupt it by Stanford University social psychologist, Jennifer L. Eberhardt

To overcome challenges, stop comparing yourself to other by wheelchair athlete Dean Furnes


Tips to Reduce Zoom Fatigue

Adapted from the book, TechStress: How Technology
is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics
, by Erik Peper, Richard Harvey and Nancy Faass.

Peper, E., Harvey, R., & Faass, N. (2020), TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics. Berkeley, CA: North Atlantic Books.


Breaking the social bond: The immobilized face

After teaching for hours on Zoom, I feel exhausted. Zoom fatigue is real.

While talking to a close friend, all of a sudden his attention shifted from listening to me to looking his cellphone as he heard a notification.  At that moment, I felt slightly left and hurt.

Students report that when they are are talking with friends and their friends look at their cellphone or responds to a notification they feel hurt and slightly dismissed. Even though most experience this break in social bonding, almost all do this with others. The looking at the phone is the conditioned stimuli to which we automatically respond when we feel it vibrate or even when we see it.  We respond by shifting our attention to the phone in the same way that Pavlov’s dogs would salivate when they heard the bell that was conditioned with the food.  On the average we now check our phones 96 times a day—that is once every 10 minutes and an increase of 20% as compared to two years ago (Asurion Research, 2019).

To feel SAFE is essential for growth and developing intimacy.  We interpret being safe through the process of neuroception.  Without conscious awareness our brain processes facial cues to identify if the interactions are safe or not safe.  If safe, vigilance and sympathetic arousal is reduced and better communication is supported (Porges, 2017). On the other hand, if a person’s face is flat and non-responsive during a conversation, it may signal danger and trigger fight/flight in the person seeing the non-reactive face. This unconscious stress reaction to a non-responsive face is the basis of the Tier Social Stress Test.  In this stress assessment, participants are asked to give a presentation and are also given an unexpected mental arithmetic test  in front of an panel of judges who do not provide any feedback or encouragement (Allen et al, 2016)). Not receiving social feedback while communicating is one of the most stressful events –it is being stuck in social quicksand as there are no cues to know what is going on.

We wonder if the absence of confirmative facial feedback is a component of Zoom fatigue when presenting to a larger group in which you see multiple faces as small postage stamps or no face at all.  In those cases, the screen does not provide enough covert facial and body feedback to know what is going on as you are communicating.  The audience non-responsive faces may covertly signal DANGER, The decrease visual and auditory signals is compounded by:

  • Technical issues due to signal bandwidth and microphone (freezing of the screen, pixilation of the display, breakup in sound, warbling of voice, etc.).
  • Viewers sitting still and facially immobilized without reacting as they watch and listen.
  • Time delay caused by participants turning on the microphone before speaking may be negatively evaluated by the listener (Roberts, Margutti, & Takano, 2011).
  • Non-recognizable faces because the face and upper torso are not illuminated and blacked out by backlighting or glare.
  • Lack of eye and face contact because the speaker or participant is looking at the screen and their camera is to the side, below or above their face.
  • Multi-tasking by the speaker who simultaneously presents and monitors and controls the Zoom controls such as chat or screen share.

In normal communication, nonverbal components comprise a significant part of the communication (Lapakko, 2007; Kendon, 2004).  We use many nonverbal cues (lip, eye, face, arm, trunk, leg and breathing movements) as well as olfactory cues to understand the message. In most group zoom meeting we only see the face and shoulders instead of an integrated somatic body response in a three-dimensional space as we look near and far. On the other hand, in front of the computer, we tend to sit immobilized and solely look at a two-dimensional screen at a fixed distance.  As we look at the screen we may not process the evolutionary nonverbal communication patterns that indicate safety. Similarly, when child does not receive feedback as it reaches out, it often becomes more demanding or withdraws as the social bond is disconnected.  

Parents captured by their cell phone while their child is demanding attention. 
From: https://live.staticflickr.com/3724/11180721716_1baa040430_b.jpg

Communication is an interactive process that supports growth and development. When the child or a person reaches out and there is no response. The detrimental effect of interrupting facial responsiveness is demonstrated by the research of University of Massachusetts’s Distinguished University Professor of Psychology Edward Tronick (Goldman, 2010; Tronick et al, 1975).

How to maintain build social bonds

Recognize that being distracted by cellphone notifications and not being present are emotional bond breakers, thus implement behaviors that build social connections.

Zoom recommendations

  • Arrange your camera so that your face and upper torso is very visible, there is no backlight and glare, and you are looking straight at the camera.
  • Provide dynamic visual feedback by exaggerating your responses (nod your head for agreement or shake your head no for disagreement).
  • When presenting, have a collaborator monitor Chat and if possible have them shift back and forth between share screen and speaker view so that the speaker can focus on the presentation.
  • Use a separate microphone to improve sound.
  • If the screen freezes or the sound warbles often an indication of insufficient bandwidth, turn off the video to improve the sound quality.

Social bonding recommendations

  • Share with your friends that you feel dismissed when they interrupt your conversation to check their cell phone.
  • When meeting friends, turn off the cell phone or put them away in another room so not to be distracted.
  • Schedule digital free time with your children.
  • During meal times, turn off cell phones or put them in another room.
  • Attend to the baby or child instead of your cellphone screen.

For a detailed perspective how technology impacts our lives and what you can do about it, see our book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics (Peper, Harvey, & Faass, 2020).  Available from: https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/ 

References:

Allen, A. P., Kennedy, P. J., Dockray, S., Cryan, J. F., Dinan, T. G., & Clarke, G. (2016). The Trier Social Stress Test: Principles and practice. Neurobiology of stress6, 113–126.

Asurion Research (November 19, 2019).Americans Check Their Phones 96 Times a Day.

Goldman, J.G. (2010). Ed Tronick and the “Still Face Experiment.” Scientific American, Oct 18.

Kendon, A. (2004). Gesture: Visible Action as Utterance. Cambridge, England: Cambridge University Press  ISBN-13 : 978-0521835251 

Lapakko, D. (2007). Communication is 93% Nonverbal: An Urban Legend Proliferates. Communication and Theater Association of Minnesota Journal, 34, 7-19.

Peper, E., Harvey, R., & Faass, N. (2020). TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics.  Berkeley, CA: North Atlantic Books. ISBN-13: 978-1583947685 

Porges, S.W. (2017). The pocket guide to the polyvagal theory: The transformative power of feeling safe. New York: W. W. Norton & Co. ISBN-13 : 978-0393707878 

Roberts F., Margutti P., Takano S. (2011). Judgments concerning the valence of inter-turn silence across speakers of American English, Italian, and Japanese. Discourse Process. 48 331–354. 10.1080/0163853X.2011.558002 

Tronick, E., Adamson, L.B., Als, H., & Brazelton, T.B. (1975, April). Infant emotions in normal and pertubated interactions. Paper presented at the biennial meeting of the Society for Research in Child Development, Denver, CO.

 

 

 

 


Ways to reduce TechStress

We are excited about our upcoming book, TechStress-How Technology is Hijacking our Lives, Strategies for Coping and Pragmatic Ergonomics, that will be published August 25, 2020.

authors Erik and Rick1

Evolution shapes behavior — and as a species, we’ve evolved to be drawn to the instant gratification, constant connectivity, and the shiny lights, beeps, and chimes of our ever-present devices. In earlier eras, these hardwired evolutionary patterns may have set us up for success, but today they confuse our instincts, leaving us vulnerable and stressed out from fractured attention, missed sleep, skipped meals, aches, pains, and exhaustion and often addicted to our digital devices.

Tech Stress offers real, practical tools to avoid evolutionary pitfalls programmed into modern technology that trip us up. You will find a range of effective strategies and best practices to individualize your workspace, reduce physical strain, prevent sore muscles, combat brain drain, and correct poor posture. The book also provides fresh insights on reducing psychological stress on the job, including ways to improve communication with coworkers and family.

Although you will have to wait until August 25th to have the book delivered to your home, you can already begin to implement ways to reduce physical discomfort, zoom/screen fatigue and exhaustion. Have a look the blogs below.

How evolution shapes behavior 

Evolutionary traps: How screens, digital notifications and gaming software exploits fundamental survival mechanisms 

How to optimize ergonomics

Reduce TechStress at Home

Cartoon ergonomics for working at the computer and laptop 

Hot to prevent and reduce neck and shoulder discomfort

Why do I have neck and shoulder discomfort at the computer? 

Relieve and prevent neck stiffness and pain 

How to prevent screen fatigue and eye discomfort

Resolve Eyestrain and Screen Fatigue 

How to improve posture and prevent slouching

“Don’t slouch!” Improve health with posture feedback 

How to improve breathing and reduce stress

Anxiety, lightheadedness, palpitations, prodromal migraine symptoms?  Breathing to the rescue! 

How to protect yourself from EMF

Cell phone radio frequency radiation increases cancer risk

book cover

Available from: https://www.penguinrandomhouse.com/books/232119/tech-stress-by-erik-peper-phd/


Do nose breathing FIRST in the age of COVID-19

nose breathing

Breathing affects every cell of our body and should be the first intervention strategy to improve physical and mental well-being (Peper & Tibbetts, 1994). Breathing patterns are much more subtle than indicated by the respiratory function tests (spirometry, lung capacity, airway resistance, diffusing capacity and blood gas analysis) or commonly monitored in medicine and psychology (breathing rate, tidal volume, peak flow, oxygen saturation, end-tidal carbon dioxide) (Gibson, Loddenkemper, Sibille & Lundback, 2019).

When a person feels safe, healthy and peaceful, the breathing is effortless and the breath flows in and out of the nose without awareness. Functional and dysfunctional breathing patterns includes an assessment of the whole body pattern by which breathing occurs such as nose versus mouth breathing, alternation of nasal patency, the rate of  air flow rate during inhalation and exhalation, the length of time during inhalation and exhalation, the post exhalation pause time. the pattern of transition between inhaling and exhaling,  the location  and timing of expansion in the truck, the range of diaphragmatic movement, and the subjective quality of breathing effort (Gilbert, 2019; Peper, Gilbert,  Harvey & Lin, 2015; Nestor, 2020).

Breathing patterns affect sympathetic and parasympathetic nervous systems (Levin & Swoap, 2019).  Inhaling tends to activate the sympathetic nervous system (fight/flight response) while exhaling activates the parasympathetic nervous system (rest and repair response) (Lehrer & Gevirtz, 2014). To observe how breathing affects your heart rate, monitor your pulse from either the radial artery in the wrist or the carotid artery in your neck as shown in Figure 1 and practice the following.radial and carotid arteru

After sensing the baseline rate of your pulse, continue to feel your radial artery pulse in your wrist or at the carotid artery in your neck. Then inhale for the count of four hold for a moment and gently exhale for the count of 5 or 6. Repeat two or three times. 

Most people observe that during inhalation, their heart rate increased (sympathetic activation for action) and during exhalation, the heart rate decreases (restoration during safety).

Nearly everyone who is anxious tends to breathe rapidly and shallowly or when stressed, unknowingly gasp or holds their breath–they may even freeze up and blank out (Peper et al, 2016). In addition, many people habitually breathe through their mouth instead of their nose and wake up tired with a dry mouth with bad breath. Mouth breathing combined with chest breathing in the absence of slower diaphragmatic breathing (the lower ribs and abdomen expand during inhalation and constrict during exhalation) is a risk factor for disorders such as irritable bowel syndrome,  hypertension, tiredness, anxiety, panic attacks, asthma, dysmenorrhea, epilepsy, cold hands and feet, emphysema, and insomnia.  Many of our clients who aware of their dysfunctional breathing patterns and are able to implement effortless breathing report significant reduction in symptoms (Chaitow, Bradley, & Gilbert, 2013; Peper, Mason, Huey, 2017; Peper & Cohen, 2017; Peper, Martinez Aranda, & Moss, 2015).

Breathing is usually overlooked as a first treatment strategy-it is not as glamorous as drugs, surgery or psychotherapy. Teaching breathing takes skill since practitioners needs to be experienced. Namely, they need to be able to demonstrate in action how to breathe effortlessly before teaching it to others.  Although it seems unbelievable, a small change in our breathing pattern can have major physical, mental, and emotional effects as can be experienced in the following practice.

Begin by breathing normally and then exhale only 70% of the inhaled air, and inhale normally and again exhale only 70% of the inhaled air.  With each exhalation exhale on 70% of the inhaled air.  Continue this for 30 seconds. Stop and note how you feel.

Almost every reports that the 30 seconds feels like a minute and experience some of the following symptoms listed in table 1.

Capture

Table 1.  Symptoms experienced after 30-45 seconds of sequentially exhaling 70% percent of the inhales air (Peper & MacHose, 1993).

Even though many therapists have long pointed out that breathing is essential, it is usually the forgotten ingredient. It is now being rediscovered in the age of the COVID-19  as respiratory health may reduce the risk of COVID-19.

Simply having very sick patients lie on their side or stomach can improve gas exchange.  By lying on your side or prone, breathing is easier as the lung can expand more which appears to reduce the utilization of respirators and intubation (Long & Singh, 2020; Farkas, 2020).  This side or prone breathing approach is thousands of years old.

One of the natural and health promoting breathing patterns to promote lung health is to breathe predominantly through the nose. The nose filters, warms, moisturizes and slows the airflow so that airway irritation is reduced. Nasal breathing also increases nitric oxide production that significantly increases oxygen absorption in the body. More importantly for dealing with COVID-19, nitric oxide,  produced and released inside the nasal cavities and the lining of the blood vessels, acts as an anti-viral and is a secondary strategy to protect  against viral infections (Mehta, Ashkar & Mossman, 2012).   During inspiration through the nose, the nitric oxide helps dilate the airways in your lungs and blood vessels (McKeown, 2016).

To increase your health, breathe through your nose, yes, even at night (McKeown, 2020).  As you practice this during the day be sure that the lower ribs and abdomen expand during inhalation and decrease in diameter during exhalation.  It is breathing without effort although many people will report that it initially feels unnatural. Exhale to the count of about 5 or 6 and inhale (allow the air to flow in) to the count of 4 or 5. Mastering nasal breathing takes practice, practice and practice. See the following for more information.

Watch the Youtube presentation by Patrick McKeown author of the Oxygen Advantage, Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health. https://www.youtube.com/watch?v=AiwrtgWQeDc&t=680s

Listen to Terry Gross interviewing James Nestor on “How The ‘Lost Art’ Of Breathing Can Impact Sleep And Resilience” on May 27, 2020 on the NPR radio show, Fresh Air.

https://www.npr.org/sections/health-shots/2020/05/27/862963172/how-the-lost-art-of-breathing-can-impact-sleep-and-resilience

Look at the Peperperspective blogs that focus on breathing in the age of Covid-19.

Read science writer James Nestor’s book, Breath The new science of a lost art, Breath The new science of a lost art.

Breathe Nestor

References

Allen, R. (2017).The health benefits of nose breathing. Nursing in General Practice.

Chaitow, L., Bradley, D., & Gilbert, C. (2013). Recognizing and treating breathing disorders: A multidisciplinary approach, 2nd ed. London: Churchill Livingstone.

Christopher, G. (2019). A Guide to Monitoring Respiration. Biofeedback, 47(1), 6-11.

Farkas, J. (2020). PulmCrit – Awake Proning for COVID-19. May 5, 2020. 

Gibson, J., Loddenkemper, R., Sibille, Y., &Lundback, B. (eds).(2019) European Lung white book. Sheffield, United Kingdom:  European Respiratory Society.

Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work?. Frontiers in psychology5, 756. 

Levin, C.J. & Swoap, S.J. (2019). The impact of deep breathing and alternate nostril breathing on heart rate variability: a human physiology laboratory. Adv Physiol Educ, 43, 270–276.

Long, L. & Singh, S. (2020). COVID-19: Awake Repositioning / Proning. EmDocs

McKeown, P. (2016). Oxygen advantage. New York: William Morrow.

McKeown, P. (2020).  Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health.

Mehta, D. R., Ashkar, A. A., & Mossman, K. L. (2012). The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS one, 7(2), e31688. 

Nestor, James. (2020). Breath The new science of a lost art. New York: Riverhead Books

Peper, E. & Cohen, T. (2017). Inhale to breathe away pelvic floor pain and enjoy intercourse. Biofeedback.45(1), 21–24.

Peper, E., Gilbert, C.D., Harvey, R. & Lin, I-M. (2015). Did you ask about abdominal surgery or injury? A learned disuse risk factor for breathing dysfunction. Biofeedback. 34(4), 173-179. DOI: 10.5298/1081-5937-43.4.06

Peper, E., Lee, S., Harvey, R., & Lin, I-M. (2016). Breathing and math performance: Implication for performance and neurotherapy. NeuroRegulation, 3(4),142–149.

Peper, E. & MacHose, M. (1993).  Symptom prescription:  Induc­ing anxiety by 70% exhalation. Biofeedback and Self-Regulation. 18 (3), 133-139.

Peper, E., Martinez Aranda, P., & Moss, E. (2015). Vulvodynia treated successfully with breathing biofeedback and integrated stress reduction: A case report. Biofeedback. 43(2), 103-109.

Peper, E., Mason, L., Huey, C. (2017).  Healing irritable bowel syndrome with diaphragmatic breathing. Biofeedback. (45-4).

Peper, E. & Tibbetts, V. (1994). Effortless diaphragmatic breathing. Physical Therapy Products. 6(2), 67-71.  Also in:  Electromyography:  Applications in Physical Therapy. Montreal: Thought Technology Ltd


Can changing your breathing pattern reduce coronavirus exposure?

sneeze

This blog is based upon our breathing  research that began in the 1990s, This  research helped identify dysfunctional breathing patterns that could contribute to illness. We developed coaching/teaching strategies with biofeedback to optimize breathing patterns, improve health and performance (Peper and Tibbetts, 1994; Peper, Martinez Aranda and Moss, 2015; Peper, Mason, and Huey, 2017).

For example, people with asthma were taught to reduce their reactivity to cigarette smoke and other airborne irritants (Peper and Tibbitts, 1992Peper and Tibbetts, 2003).  The smoke of cigarettes or vaping spreads out as the person exhales. If the person was infected, the smoke could represent the cloud of viruses that the other people would inhale as is shown in Figure 1.vaping

Figure 1. Vaping by young people in Riga, Latvia (photo by Erik Peper).

To learn how to breathe differently, the participants  first learned effortless slow diaphragmatic breathing. Then were taught that the moment they would become aware of an airborne irritant such as cigarette smoke, they would hold their breath and relax their body and move away from the source of the polluted air while exhaling very slowly through their nose. When the air was clearer they would inhale and continue effortless diaphragmatically breathing (Peper and Tibbetts, 1994).  From this research we propose that people may reduce exposure to the coronavirus by changing their breathing pattern; however, the first step is prevention by following the recommended public health guidelines.

  • Social distancing (physical distancing while continuing to offer social support)
  • Washing your hands with soap for at least 20 seconds
  • Not touching your face
  • Cleaning surfaces which could have been touched by other such as door bell, door knobs, packages.
  • Wear a mask to protect other people and your community. The mask will reduce the shedding of the virus to others by people with COVID-19 or those who are asymptomatic carriers.

Reduce your exposure to the virus when near other people by changing your breathing pattern 

Normally when startled or surprised, we tend to gasp and inhale air rapidly. When someone sneezes, coughs or exhales near you, we often respond with a slight gasp and inhale their droplets. To reduce inhaling their droplets (which may contain the coronavirus virus), implement the following:

  • When a person is getting too close
    • Hold your breath with your mouth closed and relax your shoulders (just pause your breathing) as you move away from the person.
    • Gently exhale through your nose (do not inhale before exhaling)-just exhale how little or much air you have
    • When far enough away, gently inhale through your nose.
    • Remember to relax and feel your shoulders drop when holding your breath.  It will last for only a few seconds as you move away from the person.  Exhale before inhaling through your nose.
  • When a person coughs or sneezes
    • Hold your breath, rotate you head away  from the person and move away from them while exhaling though your nose.
    • If you think the droplets of the sneeze or cough have landed on you or your clothing, go home, disrobe outside your house, and put your clothing into the washing machine. Take a shower and wash yourself with soap.
  • When passing a person ahead of you or who is approaching you
    • Inhale before they are too close and exhale through your nose as you are passing them.
    • After you are more than 6 feet away gently inhale through your nose.
  • When talking to people outside
    • Stand so that the breeze/wind hits both people from the same side so that the exhaled droplets are blown away from both of you (down wind).

These  breathing skills seem so simple; however, in our experience with people with asthma and other symptoms, it took practice, practice, and practice to change their automatic breathing patterns. The new pattern is pause (stop) the breath and then exhale through your nose. Remember, this breathing pattern is not forced and with practice it will occur effortlessly.

The following blogs offer instructions for mastering effortless diaphragmatic breathing.

https://peperperspective.com/2017/06/23/healing-irritable-bowel-syndrome-with-diaphragmatic-breathing/

https://peperperspective.com/2018/10/04/breathing-reduces-acid-reflux-and-dysmenorrhea-discomfort/

https://peperperspective.com/2019/03/24/anxiety-lightheadedness-palpitations-prodromal-migraine-symptoms-breathing-to-the-rescue/

https://peperperspective.com/2017/03/19/enjoy-sex-breathe-away-the-pain/

https://peperperspective.com/2015/02/18/reduce-hot-flashes-and-premenstrual-symptoms-with-breathing/

https://peperperspective.com/2015/09/25/resolving-pelvic-floor-pain-a-case-report/

References

Peper, E., Martinez Aranda, P., & Moss, E. (2015). Vulvodynia treated successfully with breathing biofeedback and integrated stress reduction: A case report. Biofeedback. 43(2), 103-109.

Peper, E., Mason, L., Huey, C. (2017).  Healing irritable bowel syndrome with diaphragmatic breathing. Biofeedback. (45-4). /

Peper, E., and Tibbetts, V. (1992).  Fifteen-Month follow up with asthmatics utilizing EMG/Incentive inspirometer feedback. Bio­feedback and Self-Regulation. 17 (2), 143-151. 

Peper, E. & Tibbetts, V. (1994). Effortless diaphragmatic breathing. Physical Therapy Products. 6(2), 67-71.  Also in:  Electromyography:  Applications in Physical Therapy. Montreal: Thought Technology Ltd. 

Peper, E.  and Tibbitts, V.  (2003). Protocol for the treatment of asthma.  In:  Zheng, Y. (ed).  Clinical Practice of Biofeedback. Beijing:  High Education Press (HEP). 163-176. ISBN 7-04-011420-8