Resolve Eyestrain and Screen Fatigue

Adapted from: Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

eyes
Forty percent of adults and eighty percent of teenagers report experiencing significant visual symptoms (eyestrain, blurry vision, dry eyes, headaches, and exhaustion) during and immediately after viewing electronic displays. These ‘technology-associated overuse’ symptoms are often labeled as digital eyestrain or computer vision syndrome (Rosenfield, 2016; Randolph & Cohn, 2017). Even our distant vision may be affected— after working in front of a screen for hours, the world looks blurry. At the same time, we may experience an increase in neck, shoulders and back discomfort. These symptoms increase as we spend more hours looking at computer screens, laptops, tablets, e-readers, gaming consoles, and cellphones for work, taking online classes, watching streaming videos for entertainment, and keeping connected with friends and family (Borhany et al, 2018; Turgut, 2018; Jensen et al, 2002).

Eye, head, neck, shoulder and back discomfort are partly the result of sitting too long in the same position and attending to the screen without taking short physical and vision breaks, moving our bodies and looking at far objects every 20 minutes or so.  The obvious question is, “Why do we stare at and are captured by, the screen?”  Two answers are typical: (1) we like the content of what is on the screen; and, (2) we feel compelled to watch the rapidly changing visual scenes.

From an evolutionary perspective, our sense of vision (and hearing) evolved to identify predators who were hunting us, or to search for prey so we could have a nice meal.  Attending to fast moving visual changes is linked to our survival.  We are unaware that our adaptive behaviors of attending to a visual or auditory signals activate the same physiological response patterns that were once successful for humans to survive–evading  predictors,  identifying food, and discriminating between friend or foe. The large and small screen (and speakers) with their attention grabbing content and notifications have become an evolutionary trap that may lead to a reduction in health and fitness (Peper, Harvey & Faass, 2020).

Near vision stress

To be able to see the screen, the eyes need to converge and accommodate. To converge,  the extraocular muscles of the eyes tighten; to focus (accomodation), the ciliary muscle around the lens tighten to increase the curvature of the lens.  This muscle tension is held constant as long as we look at the screen. Overuse of these muscles results is near vision stress that contributes to computer vision syndrome, development of myopia in younger people, and other technology-associated overuse syndromes (Sherwin et al, 2012; Enthoven et al, 2020).

Continually overworking the visual muscles related to convergences increases tension and contributes to eyestrain. While looking at the screen, the eye muscles seldom have the chance to relax.  To function effectively, muscles need to relax /regenerate after momentary tightening. For the eye muscles to relax, they need to look at the far distance– preferably objects green in color. As stated earlier, the process of  distant vision occurs by relaxing the extraocular muscles to allow the eyes to diverge along with relaxing the ciliary muscle to allow the lens to flatten.  In our digital age, where screen of all sizes are ubiquitous, distant vision is often limited to the nearby walls behind a screen or desk which results in keeping the focus on nearby objects and  maintaining muscular tension in the eyes.

As we evolved, we continuously alternated between between looking at the far distance and nearby areas for food sources as well as signals indicating danger. If we did not look close and far, we would not know if a predator was ready to attack us.  Today we tend to be captured by the screens.  Arguably, all media content is designed to capture our attention such as data entry tasks required for employment, streaming videos for entertainment, reading and answering emails, playing e-games, responding to text notifications, looking at Instagram and Snapchat photos and Tiktok videos, scanning Tweets and using social media accounts such as Facebook. We are unaware of the symptoms of visual stress until we experience symptoms. To illustrate the physiological process that covertly occurs during convergence and accommodation, do the following exercise.

Sit comfortably and lift your right knee a few inches up so that the foot is an inch above the floor.  Keep holding it in this position for a minute…. Now let go and relax your leg.

A minute might have seemed like  a very long time and you may have started to feel some discomfort in the muscles of your hip.  Most likely, you observed that when you held your knee up, you most likely held your breath and tightened your neck and back. Moreover, to do this for more than a few minutes would be very challenging. 

Lift your knee up again and notice the automatic patterns that are happening in your body. 

For muscles to regenerate they need momentary relaxation which allows blood flow and lymph flow to occur. By alternately tensing and relaxing muscles, they can work more easily for longer periods of time without experiencing fatigue and discomfort (e.g., we can hike for hours but can only lift our knee for a few minutes).

Solutions to relax the eyes and reduce eye strain 

  • Reestablish the healthy evolutionary pattern of alternately looking at far and near distances to reduce eyestrain, such as:
    • Look out through a window at a distant tree for a moment after reading an email or clicking link.
    • Look up and at the far distance each time you have finished reading a page or turn the page over.
  • Rest and regenerate your eyes with palming. While sitting upright, place a pillow or other supports under our elbows so that your hands can cover your closed eyes without tensing the neck and shoulders.palming
    • Cup the hands so that there is no pressure on your eyeballs, allow the base of the hands to touch the cheeks while the fingers are interlaced and resting your forehead.
    • Close your eyes, imagine seeing black. Breathe slowly and diaphragmatically while feeling the warmth of the palm soothing the eyes. Feel your shoulders, head and eyes relaxing. Palm for 5 minutes while breathing at about six breaths per minute through your nose.  Then stretch and go back to work.

Palming is one of the many practices that improves vision. For a comprehensive perspective and pragmatic exercises to reduce eye strain, maintain and improve vision, see the superb book by Meir Schneider, PhD., L.M.T., Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement.

Increased sympathetic arousal

Seeing the changing stimuli on the screen evokes visual attention and increases sympathetic arousal. In addition, many people automatically hold their breath when they see novel visual or hear auditory signals; since, they trigger a defense or orienting response. At the same time, without awareness,  we may tighten our neck and shoulder  muscles as we bring our nose literally to the screen.  As we attend and concentrate to see what is on the screen, our blinking rate decreases significantly.  From an evolutionary perspective, an unexpected movement in the periphery could be a snake, a predator, a friend or foe and the body responds by getting ready: freeze, fight or flight. We still react the same survival responses. Some of the physiological reactions that occur include:

  • Breath holding or shallow breathing. These often occur the moment we receive a text notification, begin concentrating and respond to the messages, or start typing or mousing.  Without awareness,  we activate the freeze, flight and fight response. By breath holding or shallow breathing, we reduce or limit our body movements, effectively becoming a non-moving object that is more difficult to see by many animal predators.  In addition, during breath holding, hearing become more acute because breathing noises are effectively reduced or eliminated.
  • Inhibition of blinking. When we blink it is another movement signal that in earlier times could give away our position. In addition, the moment we blink we become temporarily blind and cannot see what the predator could be doing next.
  • Increased neck, shoulder and back tension. The body is getting ready for a defensive fight or avoidance flight.

Experience some of these automatic physiological responses described above by doing the following two exercises.

Eye movement neck connection:  While sitting up and looking at the screen, place your fingers on the back of the neck on either side of the cervical spine just below the junction where the spine meets the skull.

neck

Feel the muscles of neck along the spine where they are attaching to the skull. Now quickly look to the extreme right and then to the extreme left with your eyes. Repeat looking back and forth with the eyes two or three times.

What did you observe?  Most likely, when you looked to the extreme right, you could feel the right neck muscles slightly tightening and when you looked the extreme left, the left neck muscles slightly tightening.  In addition, you may have held your breath when you looked back and forth.

Focus and neck connection:  While sitting up and looking at the screen, place your fingers on the back of the neck as you did before. Now focus intently on the smallest size print or graphic details on the screen.  Really focus and concentrate on it and look at all the details.

What did you observe?  Most likely, when you focused on the text, you brought your head slightly forward and closer to the screen, felt your neck muscles tighten,  and possibly held your breath or started to breathe shallowly.

As you concentrated, the automatic increase in arousal, along with the neck and shoulder tension and reduced blinking contributes to developing discomfort. This can become more pronounced after looking at screens to detailed figures, numerical data, characters and small images for hours (Peper, Harvey & Tylova, 2006; Peper & Harvey, 2008; Waderich et al, 2013).

Staying alert, scanning  and reacting to the images on a computer screen or notifications from text messages, can become exhausting. in the past, we scanned the landscape, looking for information that will help us survive (predators, food sources, friend or foe)  however today, we react to the changing visual stimuli on the screen. The computer display and notifications have become evolutionary traps since they evoke these previously adaptive response patterns that allowed us to survive.

The response patterns occur mostly without awareness until we experience discomfort. Fortunately, we  can become aware of our body’s reactions with physiological monitoring which makes the invisible visible as shown in the figure below (Peper, Harvey & Faass, 2020).

biofeedback

Representative physiological patterns that occur when working at a computer, laptop, tablet or cellphone are unnecessary neck and shoulder tension, shallow rapid breathing, and an increase in heart rate during data entry. Even when the person is resting their hands on the keyboard, forearm muscle tension, breathing and heart rate increased.

Moreover, muscle tension in the neck and shoulder region also increased, even when those muscles were not needed for data entry task.  Unfortunately, this unnecessary tension and shallow breathing contributes to exhaustion and discomfort (Peper, Harvey & Faass, 2020).

With biofeedback training, the person can learn to become aware and control these dysfunctional patterns and prevent discomfort (Peper & Gibney, 2006; Peper et, 2003).  However, without access to biofeedback monitoring, assume that you respond similarly while working. Thus, to prevent discomfort and improve health and performance, implement the following.

Finally, for a comprehensive overview based on an evolutionary perspective that explains why TechStress develops, why digital addiction occurs. and what can be done to prevent discomfort and improve health and performance, see our new book by Erik Peper, Richard Harvey and Nancy Faass, Tech Stress-How Technology is Hijack our Lives, Strategies for Coping and Pragmatic Ergonomics.

book cover

References

Borhany, T., Shahid, E., Siddique, W. A., & Ali, H. (2018). Musculoskeletal problems in frequent computer and internet users. Journal of family medicine and primary care7(2), 337–339. 

Enthoven, C. A., Tideman, W.L., Roel of Polling, R.J.,Yang-Huang, J., Raat, H., & Klaver, C.C.W. (2020). The impact of computer use on myopia development in childhood: The Generation R study. Preventtive Medicine, 132, 105988.

Jensen, C., Finsen, L., Sogaard, K & Christensen, H. (2002). Musculoskeletal symptoms and duration of computer and mouse use,  International Journal of Industrial Ergonomics, 30(4-5), 265-275.

Peper, E. & Gibney, K. (2006). Muscle Biofeedback at the Computer- A Manual to Prevent Repetitive Strain Injury (RSI) by Taking the Guesswork out of Assessment, Monitoring and Training. The Biofeedback Federation of Europe. Download free PDF version of the book:  http://bfe.org/helping-clients-who-are-working-from-home/

Peper, E. & Harvey, R. (2008). From technostress to technohealth.  Japanese Journal of Biofeedback Research, 35(2), 107-114.

Peper, E., Harvey, R. & Faass, N. (2020). TechStress: How Technology is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Peper, E., Harvey, R. & Tylova, H. (2006). Stress protocol for assessing computer related disorders.  Biofeedback. 34(2), 57-62. 

Peper, E., Wilson, V.S., Gibney, K.H., Huber, K., Harvey, R. & Shumay. (2003). The Integration of Electromyography (sEMG) at the Workstation:  Assessment, Treatment and Prevention of Repetitive Strain Injury (RSI). Applied Psychophysiology and Biofeedback, 28 (2), 167-182.

Randolph, S.A. & Cohn, A. (2017).  Computer vision syndrome. Workplace, Health and Safety, 65(7), 328.

Rosenfield, M. (2016). Computer vision syndrome (a.k.a. digital eye strain). Optometry in Practice, 17(1), 1 1 – 10. 

Schneider, M. (2016). Vision for Life, Revised Edition: Ten Steps to Natural Eyesight Improvement. Berkeley: North Atlantic Books. https://self-healing.org/shop/books/vision-for-life-2nd-ed

Sherwin, J.C., Reacher, M.H., Keogh, R. H., Khawaja, A. P., Mackey, D.A.,& Foster, P. J. (2012). The association between time spent outdoors and myopia in children and adolescents. Ophthalmology,119(10), 2141-2151.

Turgut, B. (2018). Ocular Ergonomics for the Computer Vision Syndrome. Journal Eye and Vision, 1(2).

Waderich, K., Peper, E., Harvey, R., & Sara Sutter. (2013). The psychophysiology of contemporary information technologies-Tablets and smart phones can be a pain in the neck. Presented at the 44st Annual Meeting of the Association for Applied Psychophysiology and Biofeedback. Portland, OR.

 

 


Do nose breathing FIRST in the age of COVID-19

nose breathingBreathing affects every cell of our body and should be the first intervention strategy to improve physical and mental well-being (Peper & Tibbetts, 1994). Breathing patterns are much more subtle than indicated by the respiratory function tests (spirometry, lung capacity, airway resistance, diffusing capacity and blood gas analysis) or commonly monitored in medicine and psychology (breathing rate, tidal volume, peak flow, oxygen saturation, end-tidal carbon dioxide) (Gibson, Loddenkemper, Sibille & Lundback, 2019).

When a person feels safe, healthy and peaceful, the breathing is effortless and the breath flows in and out of the nose without awareness. Functional and dysfunctional breathing patterns includes an assessment of the whole body pattern by which breathing occurs such as nose versus mouth breathing, alternation of nasal patency, the rate of  air flow rate during inhalation and exhalation, the length of time during inhalation and exhalation, the post exhalation pause time. the pattern of transition between inhaling and exhaling,  the location  and timing of expansion in the truck, the range of diaphragmatic movement, and the subjective quality of breathing effort (Gilbert, 2019; Peper, Gilbert,  Harvey & Lin, 2015; Nestor, 2020).

Breathing patterns affect sympathetic and parasympathetic nervous systems (Levin & Swoap, 2019).  Inhaling tends to activate the sympathetic nervous system (fight/flight response) while exhaling activates the parasympathetic nervous system (rest and repair response) (Lehrer & Gevirtz, 2014). To observe how breathing affects your heart rate, monitor your pulse from either the radial artery in the wrist or the carotid artery in your neck as shown in Figure 1 and practice the following.radial and carotid arteru

After sensing the baseline rate of your pulse, continue to feel your radial artery pulse in your wrist or at the carotid artery in your neck. Then inhale for the count of four hold for a moment and gently exhale for the count of 5 or 6. Repeat two or three times. 

Most people observe that during inhalation, their heart rate increased (sympathetic activation for action) and during exhalation, the heart rate decreases (restoration during safety).

Nearly everyone who is anxious tends to breathe rapidly and shallowly or when stressed, unknowingly gasp or holds their breath–they may even freeze up and blank out (Peper et al, 2016). In addition, many people habitually breathe through their mouth instead of their nose and wake up tired with a dry mouth with bad breath. Mouth breathing combined with chest breathing in the absence of slower diaphragmatic breathing (the lower ribs and abdomen expand during inhalation and constrict during exhalation) is a risk factor for disorders such as irritable bowel syndrome,  hypertension, tiredness, anxiety, panic attacks, asthma, dysmenorrhea, epilepsy, cold hands and feet, emphysema, and insomnia.  Many of our clients who aware of their dysfunctional breathing patterns and are able to implement effortless breathing report significant reduction in symptoms (Chaitow, Bradley, & Gilbert, 2013; Peper, Mason, Huey, 2017; Peper & Cohen, 2017; Peper, Martinez Aranda, & Moss, 2015).

Breathing is usually overlooked as a first treatment strategy-it is not as glamorous as drugs, surgery or psychotherapy. Teaching breathing takes skill since practitioners needs to be experienced. Namely, they need to be able to demonstrate in action how to breathe effortlessly before teaching it to others.  Although it seems unbelievable, a small change in our breathing pattern can have major physical, mental, and emotional effects as can be experienced in the following practice.

Begin by breathing normally and then exhale only 70% of the inhaled air, and inhale normally and again exhale only 70% of the inhaled air.  With each exhalation exhale on 70% of the inhaled air.  Continue this for 30 seconds. Stop and note how you feel.

Almost every reports that the 30 seconds feels like a minute and experience some of the following symptoms listed in table 1.

Capture

Table 1.  Symptoms experienced after 30-45 seconds of sequentially exhaling 70% percent of the inhales air (Peper & MacHose, 1993).

Even though many therapists have long pointed out that breathing is essential, it is usually the forgotten ingredient. It is now being rediscovered in the age of the COVID-19  as respiratory health may reduce the risk of COVID-19.

Simply having very sick patients lie on their side or stomach can improve gas exchange.  By lying on your side or prone, breathing is easier as the lung can expand more which appears to reduce the utilization of respirators and intubation (Long & Singh, 2020; Farkas, 2020).  This side or prone breathing approach is thousands of years old.

One of the natural and health promoting breathing patterns to promote lung health is to breathe predominantly through the nose. The nose filters, warms, moisturizes and slows the airflow so that airway irritation is reduced. Nasal breathing also increases nitric oxide production that significantly increases oxygen absorption in the body. More importantly for dealing with COVID-19, nitric oxide,  produced and released inside the nasal cavities and the lining of the blood vessels, acts as an anti-viral and is a secondary strategy to protect  against viral infections (Mehta, Ashkar & Mossman, 2012).   During inspiration through the nose, the nitric oxide helps dilate the airways in your lungs and blood vessels (McKeown, 2016).

To increase your health, breathe through your nose, yes, even at night (McKeown, 2020).  As you practice this during the day be sure that the lower ribs and abdomen expand during inhalation and decrease in diameter during exhalation.  It is breathing without effort although many people will report that it initially feels unnatural. Exhale to the count of about 5 or 6 and inhale (allow the air to flow in) to the count of 4 or 5. Mastering nasal breathing takes practice, practice and practice. See the following for more information.

Watch the Youtube presentation by Patrick McKeown author of the Oxygen Advantage, Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health. https://www.youtube.com/watch?v=AiwrtgWQeDc&t=680s

Listen to Terry Gross interviewing James Nestor on “How The ‘Lost Art’ Of Breathing Can Impact Sleep And Resilience” on May 27, 2020 on the NPR radio show, Fresh Air.

https://www.npr.org/sections/health-shots/2020/05/27/862963172/how-the-lost-art-of-breathing-can-impact-sleep-and-resilience

Look at the Peperperspective blogs that focus on breathing in the age of Covid-19.

Read science writer James Nestor’s book, Breath The new science of a lost art, Breath The new science of a lost art.

Breathe Nestor

References

Allen, R. (2017).The health benefits of nose breathing. Nursing in General Practice.

Chaitow, L., Bradley, D., & Gilbert, C. (2013). Recognizing and treating breathing disorders: A multidisciplinary approach, 2nd ed. London: Churchill Livingstone.

Christopher, G. (2019). A Guide to Monitoring Respiration. Biofeedback, 47(1), 6-11.

Farkas, J. (2020). PulmCrit – Awake Proning for COVID-19. May 5, 2020. 

Gibson, J., Loddenkemper, R., Sibille, Y., &Lundback, B. (eds).(2019) European Lung white book. Sheffield, United Kingdom:  European Respiratory Society.

Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work?. Frontiers in psychology5, 756. 

Levin, C.J. & Swoap, S.J. (2019). The impact of deep breathing and alternate nostril breathing on heart rate variability: a human physiology laboratory. Adv Physiol Educ, 43, 270–276.

Long, L. & Singh, S. (2020). COVID-19: Awake Repositioning / Proning. EmDocs

McKeown, P. (2016). Oxygen advantage. New York: William Morrow.

McKeown, P. (2020).  Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health.

Mehta, D. R., Ashkar, A. A., & Mossman, K. L. (2012). The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS one, 7(2), e31688. 

Nestor, James. (2020). Breath The new science of a lost art. New York: Riverhead Books

Peper, E. & Cohen, T. (2017). Inhale to breathe away pelvic floor pain and enjoy intercourse. Biofeedback.45(1), 21–24.

Peper, E., Gilbert, C.D., Harvey, R. & Lin, I-M. (2015). Did you ask about abdominal surgery or injury? A learned disuse risk factor for breathing dysfunction. Biofeedback. 34(4), 173-179. DOI: 10.5298/1081-5937-43.4.06

Peper, E., Lee, S., Harvey, R., & Lin, I-M. (2016). Breathing and math performance: Implication for performance and neurotherapy. NeuroRegulation, 3(4),142–149.

Peper, E. & MacHose, M. (1993).  Symptom prescription:  Induc­ing anxiety by 70% exhalation. Biofeedback and Self-Regulation. 18 (3), 133-139.

Peper, E., Martinez Aranda, P., & Moss, E. (2015). Vulvodynia treated successfully with breathing biofeedback and integrated stress reduction: A case report. Biofeedback. 43(2), 103-109.

Peper, E., Mason, L., Huey, C. (2017).  Healing irritable bowel syndrome with diaphragmatic breathing. Biofeedback. (45-4).

Peper, E. & Tibbetts, V. (1994). Effortless diaphragmatic breathing. Physical Therapy Products. 6(2), 67-71.  Also in:  Electromyography:  Applications in Physical Therapy. Montreal: Thought Technology Ltd


Reduce initial dose of the virus and optimize your immune system

Erik Peper and Richard Harvey

COVID-19 can sometimes overwhelm young and old immune systems and in some cases can result in ‘Severe Acute Respiratory Syndrome’ pneumonia and death (CDC, 2020). The risk is greater for older people who may simultaneously be dealing with cancers, cardiovascular heart disease, obesity, diabetes, emphysema, immune suppression or other health issues.  As we age the immune system deteriorates  (immunosenescence) that reduces the response of the adaptive immune system that needs to respond to the virus infection (Aw, Silva & Palmer, 2007; Osttan, Monti, Gueresi, et al., 2016).

Severity of disease may depend upon initial dose of the virus

In a brilliant article, How does the coronavirus behave inside a patient? We’ve counted the viral spread across peoples; now we need to count it within people, assistant professor of medicine at Columbia University and cancer physician Siddhartha Mukherjee points out that severity of the disease may be related to the initial dose of the virus.  Namely, if you receive a very small dose (not too many virus particles), they will infect you; however, the body can activate its immune response to cope with the infection.  The low dose exposure act similar to vaccination.  If on the other hand you are exposed to a very high dose then your body is overwhelmed with the infection and is unable to respond effectively.  Think of a forest fire. A small fire can easily be suppressed since there is enough time to upgrade the fire-fighting resources; however, during a fire-storm with multiple fires occurring at the same time, the fire-fighting resources are overwhelmed and there is not enough time to recruit outside fire-fighting resources.

As Mukherjee points out this dose exposure relationship with illness severity has a long history. For example, before vaccinations for childhood illnesses were available, a child who became infected at the playground usually experienced a mild form of the disease.  However, the child’s siblings who were infected at home develop a much more severe form of the disease.

The child infected in the playground most likely received a relatively small dose of the virus over a short time period (viral concentration in the air is low).  On the other hand, the siblings who were infected at home by their infected brother or sister received a high concentration of the virus over an extended period which initially overwhelmed their immune system. Higher virus concentration is more likely during the winter and in well insulated/sealed houses where the air is recirculated without going through HEPA or UV filters to sterilize the air. When there is no fresh air to decrease or remove the virus concentration, the risk of severity of illness may be higher (Heid, 2020).

The risk of becoming sick with COVID-19 can only occur if you are exposed to the coronavirus and the competency of your immune system. This can be expressed in the following equation.Risk ratioThis equation suggests two strategies to reduce risk:  reduce coronavirus load/exposure and strengthen the immune system.

How to reduce the coronavirus load/dose of virus exposure

Assume that everyone is contagious even though they may appear healthy.  Research suggests that people are already contagious before developing symptoms or are asymptomatic carriers who do not get sick and thereby unknowingly spread the virus (Furukawa, Brooks, Sobel, 2020). Dutch researchers have reported that, “The proportion of pre-symptomatic transmission was 48% for Singapore and 62% for Tianjin, China (Ganyani et al, 2020). Thus, the intervention to isolate people who have symptoms of COVID-19 (fever, dry cough, etc.) most likely will miss the asymptomatic carriers who may infect the community without awareness.  Only if you have been tested, do you know if you been exposed or recovered from the virus. To reduce exposure to the virus, avoid the  “Three C’s” — closed spaces with poor ventilation, crowded places and close contactand do the following:

  1. Follow the public health guidelines:
    • Social distance (physical distancing while continuing to offer social support)
    • Wear a mask and gloves to reduce spreading the virus to others.
    • Wash your hands with soap for at least 20 seconds.
    • Avoid touching your face to prevent microorganisms and viruses to enter the body through mucosal surfaces of the nose mouth and eyes.
    • Clean surfaces which could have been touched by other such as door bell, door knobs, packages.
  1. Avoid the person’s slipstream that may contain the droplets in the exhaled air. The purpose of social distancing is to have enough distance between you and another person so that the exhaled air of the other person would not reach you. The distance between people depends upon their activities and the direction of airflow.

In a simulation study, Professor Bert Blocken and his colleagues at KU Leuven and Eindhoven University of Technology reported that the plume of the exhaled air that potentially could contain the virus  droplets could extend much more than 5 feet. It  would depends upon the direction of the wind and whether the person is walking or jogging as show in Figure 1 (Blocken, 2020).

Slipstream

Figure 1. The plume of exhaled droplets that could contain the virus extends behind the person in their slipstream (photo from KU Leuven en TU Eindhoven).

The plume of exhaled droplets in the person’s slipstream may extend more than 15 feet while walking and more than 60 feet while jogging or bicycling.  Thus. social distancing under these conditions is much more than 6 feet and it means avoiding their slipstream and staying much further away from the person. 

  1. Increase fresh air to reduce virus concentration. The CDC recommends ventilation with 6 to 12 room air changes per hour for effective air disinfection (Nardell & Nathavitharana, 2020). By increasing the fresh outside air circulation, you dilute the virus concentration that may be shed by an infected asymptomatic or sick person  (Qian & Zheng, 2018).  Thus, if you are exposed to the virus, you may receive a lower dose and increase the probability that you experience a milder version of the disease. Almost all people who contract COVID-19 are exposed indoors to the virus.  In the contact tracing study of 1245 confirmed cases in China, only a single outbreak of two people occurred in an outdoor environment (Qian  et al, 2020). To increase fresh air (this assumes that outside air is not polluted), explore the following:
    • Open the windows to allow cross ventilation through your house or work setting. One of the major reasons that the flu season spikes in the winter is that people congregate indoors to escape weather extremes. People keep their windows closed to conserve heat and reduce heating bill costs. Lack of fresh air circulation increases the viral density and risk of illness severity (Foster, 2014).
    • Use an exhaust fans to ventilate a building. By continuously replacing the inside “stale” air  with fresh outside air, the concentration of the virus in the air is reduced.
    • Use High-efficiency particulate air (HEPA) air purifiers to filter the air within a room. These devices will filter out particles whose diameter is equal to 0.3 µ m. They will not totally filter out the virus; however, they will reduce it.
    • Avoid buildings with recycled air unless the heating and air conditioning system (HAC) uses HEPA filters.
    • Wear masks to protect other people and your community. The mask will reduce the shedding of the virus to others by people with COVID-19 or those who are asymptomatic carriers. This is superbly illustrated by Prather, Wang, & Schooley (2020) that not masking maximizes exposure, whereas universal masking results in the least exposure. masks without header
  1. Avoid long-term exposure to air pollution. People exposed to high levels of air pollution and fine particulate matter (PM2.5)  are more at risk to develop chronic respiratory conditions and COVID-19 death rates. In the 2003 study of SARS, ecologic analysis conducted among 5 regions in China with 100 or more SARS cases showed that case fatality rate increased with the increment of air pollution index (Cui, Zhang, Froines, et al. , 2003). The higher  the concentration of fine particulate matter (PM2.5), the higher the death rate (Conticini, Frediani, & Caro, 2020).  As researchers, Xiao Wu, Rachel C. Nethery and colleagues (2020) from the Harvard T.H. Chan School of Public Health point out,  “A small increase in long-term exposure to PM2.5 leads to a large increase in COVID-19 death rate, with the magnitude of increase 20 times that observed for PM2.5 and all cause mortality. The study results underscore the importance of continuing to enforce existing air pollution regulations to protect human health both during and after the COVID-19 crisis.
  2. Breathe only through your nose. The nose filters, warms, moisturizes and slows the airflow so that airway irritation is reduced. Nasal breathing increases nitric oxide production that significantly increases oxygen absorption in the body. During inspiration through the nose the nitric oxide helps dilate the airways in your lungs and blood vessels (McKeown, 2016). More importantly for dealing with COVID-19, Nitric Oxide,  produced and released inside the nasal cavities and the lining of the blood vessels, acts as an antiviral and a secondary strategy to protect against viral infections (Mehta, Ashkar & Mossman, 2012).   

How to strengthen your immune system to fight the virus

The immune system is dynamic and many factors as well as individual differences affect its ability to fight the virus.  It is possible that a 40 year-old person may have an immune systems that functions as a 70 year old, while some 70 year-olds have an immune system that function as a 40 year-old. Factors that contribute to immune competence include genetics, aging, previous virus exposure, and lifestyle (Lawton, 2020).

It is estimated that 70-80% mortality caused by Covid-19 occurred in people with comorbidity who are: over 65, male, lower socioeconomic status (SES), non white, overweight/obesity, cardiovascular heart disease, and immunocompromised. Although children comprised only a small percentage of the seriously ill patients, 83% of those children in the intensive care units had comorbidities and 60% were obese. The majority of contributing factors to comorbidities and obesity are the result of economic inequality and life style patterns such as the Western inflammatory diet (Shekerdemian et al, 2020; Zachariah, 2020; Pollan, 2020).  

By taking charge of your lifestyle habits through an integrated approach, you may be able to strengthen your immune system (Alschuler et al, 2020; Lawton, 2020). The following tables, adapted from the published articles by Lawton (2020) and Alschuler et al, (2020), list some of the factors that may support or decrease the immune system.

Factors that may decrease immune competence

decrease immune competence rev

Factors that may support immune competence

increase immune competence rev1

Phytochemicals and vitamins that may support immune competence

immune system vitamins

Conclusion

An ounce of prevention is worth a pound of cure.  Thus, to reduce the risk of covid-19 disease severity, implement strategies to reduce viral dosage exposure and strengthen the immune system.  Many of these factors are within our control. Thus, increase fresh air circulation, reduce stress, decrease foods that tend to increase inflammation (the industrialized western diet that significant contributes to the development of chronic disease), and increase foods, vitamins and nutrients that support immune competence.

These factors have been superbly summarized by the World Health Organization Director General Dr. Tedros Adhanom in his presentation, Practical tips how to keep yourself safe.

REFERENCES

Abhanon, T. (2020 March 26). Practical tips how to keep yourself safe.

Alschuler, L., Weil, A., Horwitz, R. Stamets, P., Chiasso, A.M., Crocker, R., & Maizes, V. (2020 March 26). Integrative considerations during the CPVID-19 pandemic. Explore, 26.

Aranow C. (2011). Vitamin D and the immune system. Journal of investigative medicine : the official publication of the American Federation for Clinical Research59(6), 881–886. 

Aw, D., Silva, A. B., & Palmer, D. B. (2007). Immunosenescence: emerging challenges for an ageing population. Immunology120(4), 435–446.

Blocken, B. (2020-04-08). Cited in, Belgishch onderzoek: fietsen, joggen of wandelen do je best niet achtr elkaar in tijden van corona. DeMorgen. 

Brandhorst, S., Choi, I.Y., Wei, M., Cheng, C.W., Sedrakyan, S., Navarrete, G., Dubeau, L., et al. (2015). A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metabolism, 22(1), 86-99. 

Campbell, J.P. & Turner, J.E. (2018). Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Frontiers in Immunology, 9, 648.  

Casas R, Sacanella E, Estruch R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr Metab Immune Disord Drug Targets. 2014;14(4):245‐254. 

CDC (2020, March 26). Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020. Morbidity and Mortality Weekly Report. CDC. March 26, 2020.

Conticini, D., Frediani, F., & Caro, D. (2020). Can atmospheric pollution be considred a co-factdor in the extremely high level of SARS-CoV-2 lethality in Northern Italy.  Environmental Pollution, available online, 4 April 2020, 114465.

D’Acquisto F. (2017). Affective immunology: where emotions and the immune response converge. Dialogues in clinical neuroscience19(1), 9–19.

Foster, H. (2014 December 1). The reason for the season: why flu strikes in winter. SITN Science in the News.

Furukawa, N.W., Brooks, J.T., & Sobel, J. (2020, July). Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis. [June3, 2020]. https://doi.org/10.3201/eid2607.201595

Ganyani, T., Kremer, C., Chen, D., Torneri, A, Faes, C., Wallinga, J., & Hensm N. (2020).    Estimating the generation interval for COVID-19 based on symptom onset data     doi:https://doi.org/10.1101/2020.03.05.20031815

Glaser, R. & Kiecolt-Glaser, J.K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews of Immunology, 5(3), 243-251. 

Holt-Lunstad,  J., Smith, T.B., Baker, M., Harris, T., & Stephenson, D. (2015).  Loneliness and social isolation as risk factors for mortality: a meta-analytic review.   Perspect Psychol Sci. 10(2), 227-237. doi:10.1177/1745691614568352

Heid, M. (2020-04-09).  The Germ-Cleaning Power of an Open Window. Elemental by Medium. 

Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27(1):19‐35. 

Kaplow, S. (2020, April 29). COVID-19 and the Risk from Recirculated Air in Buildings. Green Building Law Update.

Koh, K.B. (2018). Stress, Emotion, and Immunity. In: Stress and Somatic Symptoms. Springer, Cham, 43-54.

Kuo M. (2015). How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Frontiers in psychology6, 1093. 

Lawton, G. (2020). You’re only as young as your immune system. New Scientist, 245(3275), 44-48.

Lee, G. Y., & Han, S. N. (2018). The Role of Vitamin E in Immunity. Nutrients10(11), 1614. 

Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487‐494.

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, Inflammation and Immunity. Nutrients8(3), 167. 

Malaguarnera L. (2019). Influence of Resveratrol on the Immune Response. Nutrients11(5), 946. 

McKeown, P. (2020). Practical 40 minute free breathing session with Patrick McKeown to improve respiratory health.

Mehta, D. R., Ashkar, A. A., & Mossman, K. L. (2012). The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS one, 7(2), e31688. 

Mukherjee, S. (2020). How does the coronavirus behave inside a patient? We’ve counted the viral spread across peoples; now we need to count it within people. The New Yorker, April 6, 2020.

Nardell, E.A. & Nathavitharana, R.R. (2020). Airborne Spread of SARS-CoV-2 and a Potential Role for Air Disinfection. JAMA. Published online June 01, 2020. doi:10.1001/jama.2020.7603 

Mukherjee, S., Dudley, J. I., & Das, D. K. (2010). Dose-dependency of resveratrol in providing health benefits. Dose-response : a publication of International Hormesis Society8(4), 478–500. 

Neupane, B., Jerrett, M., Burnett, R.T., Marrie, T., Arain, A., Loeb, M. (2018).  Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med, 181(1), 47‐53.

Ostan, R., Monti, D., Gueresi, P., Bussolotto, M., Franceschi, C., & Baggio, G. (2016). Gender, aging and longevity in humans: An update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clinical Science, 130(19), 1711-1725.

Qian, H., & Zheng, X. (2018). Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. Journal of thoracic disease10(Suppl 19), S2295–S2304. https://doi.org/10.21037/jtd.2018.01.24

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science5, e47. 

Perez de Heredia, F., Gomez-Martinez, S., &Marcos, A. (2012). Chronic and degenerative diseases Obesity, inflammation and the immune system. Proceedings of the Nutrition Society, 71, 332–338.

Pollan, M. (2020). The sickness in our food supply. The New York Review of Books. June 11, 2020 issue. https://www.nybooks.com/articles/2020/06/11/covid-19-sickness-food-supply/

Prasad A. S. (2008). Zinc in human health: effect of zinc on immune cells. Molecular medicine (Cambridge, Mass.)14(5-6), 353–357. 

Prather, K. A., Wang, C.C., * Schooley, R.T. (2020). Reducing transmission of SARS-CoV-2. Science, 10.1126/sciennce.abc6197

Price MA, Butow PN, Bell ML, et al. Helplessness/hopelessness, minimization and optimism predict survival in women with invasive ovarian cancer: a role for targeted support during initial treatment decision-making?. Support Care Cancer. 2016;24(6):2627‐2634. 

Qian, H., Miao, T, Liu, L, Zheng, Z, Luo, D., & Li, Yuguo. (2020). Indoor transmission of SARS-CoV-2. MedRxiv The preprint server for health sciences. https://doi.org/10.1101/2020.04.04.20053058

Reed, R.G. & Raison, C.L. (2016). Stress and the Immune System. In: Esser, C. (eds) Environmental Influences on the Immune System. Springer, Vienna, 97-126.

Sarkar, D., Jung, M. K., & Wang, H. J. (2015). Alcohol and the Immune System. Alcohol Research : Current Reviews37(2), 153–155. 

Segerstrom, S. C. & Miller, G. E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological bulletin130(4), 601–630.

Shekerdemian L.S., Mahmood N.R., Wolfe, K.K., et al (2020). International COVID-19 PICU Collaborative. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units.JAMA Pediatr. Published online May 13, 2020. doi:10.1001/jamapediatrics.2020.1948

Simpson, N., Haack, M., Mullington, J.M. (2017). Sleep and Immune Regulation. In: Chokroverty S. (eds). Sleep Disorders Medicine. Springer, New York, NY, 195-203.

Uchino, B. N., Vaughn, A. A., Carlisle, M., & Birmingham, W. (2012). Social support and immunity. In S. C. Segerstrom (Ed.), Oxford library of psychology. The Oxford handbook of psychoneuroimmunology (p. 214–233). Oxford University Press. 

Witek, L, Tell, J. D., & Mathews, L. (2019). Mindfulness based stress reduction provides psychological benefit and restores immune function of women newly diagnosed with breast cancer: A randomized trial with active control. Brain, behavior, and immunity, 80, 358-373. 

Wu, X., Nethery, R.c., Sabath, B., Braun, D., & Dominici, R. (2020). Exposure to air polution and COVID-19 mortality in the United States. Submitted to New England Journal of Medicine. April 5, 2020. 

Zachariah, P., Johnson, C.L., Halabi, K.C., et al (2020) Columbia Pediatric COVID-19 Management Group. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in New York City, New York. JAMA Pediatr. Published online June 3, 2020. doi:10.1001/jamapediatrics.2020.2430

 


Can changing your breathing pattern reduce coronavirus exposure?

sneeze

This blog is based upon our breathing  research that began in the 1990s, This  research helped identify dysfunctional breathing patterns that could contribute to illness. We developed coaching/teaching strategies with biofeedback to optimize breathing patterns, improve health and performance (Peper and Tibbetts, 1994; Peper, Martinez Aranda and Moss, 2015; Peper, Mason, and Huey, 2017).

For example, people with asthma were taught to reduce their reactivity to cigarette smoke and other airborne irritants (Peper and Tibbitts, 1992Peper and Tibbetts, 2003).  The smoke of cigarettes or vaping spreads out as the person exhales. If the person was infected, the smoke could represent the cloud of viruses that the other people would inhale as is shown in Figure 1.vaping

Figure 1. Vaping by young people in Riga, Latvia (photo by Erik Peper).

To learn how to breathe differently, the participants  first learned effortless slow diaphragmatic breathing. Then were taught that the moment they would become aware of an airborne irritant such as cigarette smoke, they would hold their breath and relax their body and move away from the source of the polluted air while exhaling very slowly through their nose. When the air was clearer they would inhale and continue effortless diaphragmatically breathing (Peper and Tibbetts, 1994).  From this research we propose that people may reduce exposure to the coronavirus by changing their breathing pattern; however, the first step is prevention by following the recommended public health guidelines.

  • Social distancing (physical distancing while continuing to offer social support)
  • Washing your hands with soap for at least 20 seconds
  • Not touching your face
  • Cleaning surfaces which could have been touched by other such as door bell, door knobs, packages.
  • Wear a mask to protect other people and your community. The mask will reduce the shedding of the virus to others by people with COVID-19 or those who are asymptomatic carriers.

Reduce your exposure to the virus when near other people by changing your breathing pattern 

Normally when startled or surprised, we tend to gasp and inhale air rapidly. When someone sneezes, coughs or exhales near you, we often respond with a slight gasp and inhale their droplets. To reduce inhaling their droplets (which may contain the coronavirus virus), implement the following:

  • When a person is getting too close
    • Hold your breath with your mouth closed and relax your shoulders (just pause your breathing) as you move away from the person.
    • Gently exhale through your nose (do not inhale before exhaling)-just exhale how little or much air you have
    • When far enough away, gently inhale through your nose.
    • Remember to relax and feel your shoulders drop when holding your breath.  It will last for only a few seconds as you move away from the person.  Exhale before inhaling through your nose.
  • When a person coughs or sneezes
    • Hold your breath, rotate you head away  from the person and move away from them while exhaling though your nose.
    • If you think the droplets of the sneeze or cough have landed on you or your clothing, go home, disrobe outside your house, and put your clothing into the washing machine. Take a shower and wash yourself with soap.
  • When passing a person ahead of you or who is approaching you
    • Inhale before they are too close and exhale through your nose as you are passing them.
    • After you are more than 6 feet away gently inhale through your nose.
  • When talking to people outside
    • Stand so that the breeze/wind hits both people from the same side so that the exhaled droplets are blown away from both of you (down wind).

These  breathing skills seem so simple; however, in our experience with people with asthma and other symptoms, it took practice, practice, and practice to change their automatic breathing patterns. The new pattern is pause (stop) the breath and then exhale through your nose. Remember, this breathing pattern is not forced and with practice it will occur effortlessly.

The following blogs offer instructions for mastering effortless diaphragmatic breathing.

https://peperperspective.com/2017/06/23/healing-irritable-bowel-syndrome-with-diaphragmatic-breathing/

https://peperperspective.com/2018/10/04/breathing-reduces-acid-reflux-and-dysmenorrhea-discomfort/

https://peperperspective.com/2019/03/24/anxiety-lightheadedness-palpitations-prodromal-migraine-symptoms-breathing-to-the-rescue/

https://peperperspective.com/2017/03/19/enjoy-sex-breathe-away-the-pain/

https://peperperspective.com/2015/02/18/reduce-hot-flashes-and-premenstrual-symptoms-with-breathing/

https://peperperspective.com/2015/09/25/resolving-pelvic-floor-pain-a-case-report/

References

Peper, E., Martinez Aranda, P., & Moss, E. (2015). Vulvodynia treated successfully with breathing biofeedback and integrated stress reduction: A case report. Biofeedback. 43(2), 103-109.

Peper, E., Mason, L., Huey, C. (2017).  Healing irritable bowel syndrome with diaphragmatic breathing. Biofeedback. (45-4). /

Peper, E., and Tibbetts, V. (1992).  Fifteen-Month follow up with asthmatics utilizing EMG/Incentive inspirometer feedback. Bio­feedback and Self-Regulation. 17 (2), 143-151. 

Peper, E. & Tibbetts, V. (1994). Effortless diaphragmatic breathing. Physical Therapy Products. 6(2), 67-71.  Also in:  Electromyography:  Applications in Physical Therapy. Montreal: Thought Technology Ltd. 

Peper, E.  and Tibbitts, V.  (2003). Protocol for the treatment of asthma.  In:  Zheng, Y. (ed).  Clinical Practice of Biofeedback. Beijing:  High Education Press (HEP). 163-176. ISBN 7-04-011420-8

 


Reduce TechStress at Home

Adapted from the upcoming book, Peper, E., Harvey, R., & Faass, (2020). Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

fig 1 extended neck

Numerous people report that working at the computer at home is more tiring than working in the office.  Although there are obvious advantages to working at home, there are also disadvantages (e.g., no space to work, challenging ergonomics, no escape from the family, lack of nonverbal cues used to communicate, less informal sharing at the water cooler, increased multitasking by working and having to take care of the children).

A major challenge is having a comfortable work space in your home.  This may mean finding a place to put the computer, keyboard and screen.  For some it is the kitchen table, desk in the corner of the bedroom, or coffee table while other it is in a totally separate room.

Incorrect ergonomic arrangement and stressed work style often increases neck, shoulder discomfort and aggravates eye strain and tiredness. Regardless how your digital work space is organized, implement the following life and work style suggestions and ergonomics recommendations to promote health.

LIFE AND WORK STYLE SUGGESTIONS

Take many, many, many breaks.  Movement breaks will reduce the covert static tension that builds up as we sit in static positions and work at the computer.

  • Every few minutes take a small break such as stand up and wiggle or role your shoulders. When performing the movements, stop looking at the screen and look around the room or out the window.
  • Every 30 minutes get up walk around for and move your body. Use timers to notify you every 30 minutes to take a break (e.g., cellphone alarms or personal digital assistants such as Hey Google, Siri, or Alexa).

Improve vision.

  • Take vision breaks to reduce eye fatigue.
    • Every few minutes look away from the screen and into the far distance and blink. If at all possible look outside at green plants which relaxes the near vision induced tension.
    • Blink and blink again. When working at the computer we reduce our blinking rate. Thus, blink each time you click on a new link, finishing entering a column of numbers, etc.
    • Close your eyes by letting the eye lids drop down as you also relax your jaw. Imagine a hook on top of your head which is pulling your head upward and at the same time drop your shoulders.
  • Reduce glare and bright backgrounds
    • Arrange your computer screen at 90 degrees to the brightest light source.
    • Have a darker background behind you when participating in video conferencing (e.g., Zoom, Skype, GoToMeeting, WhatsApp, FaceTime). Your face will be visible.

Regenerate

  • When stressed remember to breathe. As you inhale let your stomach expand as you exhale let the air flow out slowly.
  • Stop watching and listening to the negative news (check the news no more than once a day). Watch positive and humorous movies.
  • Get fresh air, go for a walk, and be in the sun
  • Reconnect with friends and share positive experiences.
  • Remind yourself, that this too shall pass.

ERGONOMIC RECOMMENDATIONS: MAKE THE WORLD YOURS

Good ergonomics means adapting the equipment and environment to you and not the other way around. Optimizes the arrangement of the chair, desk, keyboard, mouse, camera, screen and yourself as shown in Figure 1.

Workstation-Setup1

Figure 1. Recommended arrangement for working at the computer.

Arrange the laptop

The laptop is challenging because if your hands are at the right height for data entry on the keyboard, then you must look down to see the screen.  If the screen at the right height, then you have to raise your hands to reach the keyboard. There are two solutions for this challenge.

  1. Use an external keyboard and mouse, then raise the laptop so that the top of the screen is at eye level. Use a laptop stand or a stack of books to raise the lap top.
  2. Use an external monitor for display, then use the laptop as your keyboard.

If these solutions are not possible, take many, many, many breaks to reduce the neck and shoulder stress.

Arrange the computer workstation

  1. Adjust the chair so that your forearms can rest on the table without raising your shoulders. This may mean sitting on a pillow. If the chair is then too high and your legs dangle, create a foot stool on which you can rest your feet.
  2. Adjust the monitor so that the top of the screen is at eye level. If the monitor is too low, raise it by putting some books underneath it.
  3. If possible, alternate standing and sitting while working.

RESOURCES

Book

Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics provides insight in how discomfort, symptoms and media addiction develops and what you can do about it.  It incorporates the role of evolutionary traps, how biofeedback makes the unaware aware, experiential physical and cognitive practices, and ergonomic recommendations to optimize health and productivity. A must book for anyone using digital devices. Peper, E., Harvey, R., & Faass, (2020). Tech Stress: How Technology Is Hijacking Our Lives, Strategies for Coping, and Pragmatic Ergonomics. Berkeley: North Atlantic Books.

Ergonomic suggestions for working at the computer and laptop.

https://peperperspective.com/2014/09/30/cartoon-ergonomics-for-working-at-the-computer-and-laptop/

https://peperperspective.com/2014/02/24/optimizing-ergonomics-adapt-the-world-to-you-and-not-the-other-way-around/

11 tips for working at home

https://www.bakkerelkhuizen.com/knowledge-center/11-productivity-tips-for-homeworkers/?utm_campaign=US+-+19+03+20&utm_source=Newsletter&utm_medium=email

How our digital world activates evolutionary response patterns.

https://peperperspective.com/2020/01/17/evolutionary-traps-how-screens-digital-notifications-and-gaming-software-exploits-fundamental-survival-mechanisms/

https://peperperspective.com/2018/02/10/digital-addiction/

How posture affects health

https://peperperspective.com/2019/07/01/dont-slouch-improves-health-with-posture-feedback/

https://peperperspective.com/2019/05/21/relieve-and-prevent-neck-stiffness-and-pain/

https://peperperspective.com/2017/11/28/posture-and-mood-implications-and-applications-to-health-and-therapy/

https://peperperspective.com/2019/01/23/head-position-it-matters/


Coronavirus risk in context: How worried should you be?

The coronavirus which causes coronavirus disease 2019 (COVID-19) appears to be a highly contagious disease. Some older people and those who are immune compromised are more at risk.  The highest risk are for older people who already have cardiovascular, diabetes, respiratory disease, and hypertension. In addition, older men over 65 years are much more at risk; however, many are smokers who have a compromised pulmonary system. Previous meta analysis showed that smoking was consistently associated with higher risk of hospital admissions after influenza infection. Nevertheless, it is reasonable to assume that over time all most all of us will become exposed to the virus, a few will get very sick, and even fewer will die.

The preliminary data suggests that most people who become infected may not even know they are infectious. Make the assumption that everyone could be contagious unless tested for the virus or antibodies to the virus since people appear to be infectious for the first four days before experiencing symptoms.

corona virus infection

The absolute risk that one would die of this disease is low although if you do become very sick it is more dangerous than the normal flu; however, the fear of this disease may be out of proportion compared to other health risks. For detailed analysis and graphic summaries see the updated research reports on the Coronavirus disease (COVID-19) by Our World in Data and Information is beautiful. These reports make data and research on the world’s largest problems understandable and accessible.

It is worthwhile to look at the absolute risk of COVID-19.  To read that more than 332,000 people world wide have died in the last five months is terrifying especially with the increasing death rate in Europe and New York; however, it needs to be understood in context of the size of the population.  The epicenter of this disease was Wuhan and Hubei Provence, China with a total population of about 60 million people.  Each year about 427,200 people die in the Wuhan and Hubei Province (the annual death rate in China is 7.12 deaths per 1000 people). Without this new viral disease, about 71,200 people would have died during the same two month period.  The question that has not been discussed is how much did the total death rate increase.  Would it be possible that some of the people who died would have died of other natural causes such as the flu?

The World Health Organization (WHO) and governments around the world should be lauded for their attempt to reduce the spread of the virus. On March 6, 2020, the United States Congress allocated $8. billion dollars to fight and prevent the spread of COVID-19. 

This funding will only partially prevent the spread of the virus because some people have no choice but to go to work when they are sick–they do not receive paid sick leave! This is true for about 30 percent of the American workers who have no coverage at work or the millions of self-employed workers (e.g. gig/freelance workers, waiters, cashiers, drivers, nannies, house cleaners).

To reduce the risk of the spreading COVID-19, anyone who feels sick or thinks they have been exposed, should receive paid sick leave so that they can stay home and self-isolate. The paid sick leave should be Federally funded and provide basic income for those whose income would be lost if they did not work.  Although it is possible that a few people will cheat and take the paid sick leave when they are well, this is worth the risk to keep the rest of population healthy. To provide possible relief, at the moment the House and Senate are working on a greater than $2 trillion dollar stimulus package. 

Personal and government responses to health risks are not always rational. 

Funding for health and illness prevention is driven by politics. For example, gun violence results in more than 100,000 people being injured each year and more than 36,000 killed—an average of 100 per day. Gun violence is a much more virulent disease than COVID-19 and more than 1.7 million Americans have died from firearms since 1968.

The Federal Government response to this gun violence epidemic has been minimal. For the first time since 1996 did the 2020 federal budget include $25 million funding for the CDC and NIH to research reducing gun-related deaths and injuries.

It is clear that the government response does not always focuses its resources on what would reduce injury and death rates the most.  Look at the difference in the national response to COVID-19 virus that has killed more than 120,000 people in the USA ($8.5 billion for the initial response and then $2 trillion stimulus package) as compared gun violence that kills 36,000 people a year in the USA ($25 million funding to study the causes of gun violence).

Be realistic about the actual risk of COVID-19 without succumbing to fear.

COVID-19 is a pandemic and I expect that 30% to 70% of us will be infected this year.  Hopefully, in the next 18 months an effective vaccine will be developed.  In the mean time, there is no known treatment, thus optimize health and reduce the exposure to the coronavirus.

To make sense of the danger of COVID-19, look at it in context to the flu. Depending upon the severity the  flu, 9,000,000 to 45,000,000 people get sick from flu and between 12,000 to 61,000 die from its complications. as shown below in Figure 1.  

influenza-burden-chart2-960pxFigure 1. The estimated U.S. influenza burden by year (from: https://www.cdc.gov/flu/about/burden/index.html)

This year the CDC estimates that there have been 20,000 to 40,000 deaths in the United States so far this year.  

 


Life has choices

When you woke up this morning, how did you feel? Were you looking forward to the day anticipating with joy what would occur or were you dreading the day as if once again you had to step on the treadmill of life?

photo

Whenever I ask this question of college students in their junior or senior year at an urban university about 20% will answer that they are looking forward to the day. The majority answer, “Well not really”, or even “Oh shit, another day”. For many students the burden of working 40 plus hours a week to pay for rent and tuition, worrying about financial debt, the challenge of commuting, and finding time to do the homework is overwhelming. Focusing on quality of life is not only a challenge for students, but for all of us.

Each day ask yourself, “Am I looking forward to my day and my activities?” If the answer is “No,” begin to explore new options. Ask yourself, “What would I like to do? Start to explore and imagine new options and then begin to plan how to implement them so that you are on the path to where you want to be.

Creating a worthwhile life is an ongoing challenge.  An inspiring essay by Steven James articulates this by exploring factors that contribute to sickness and health during the height of the AIDs epidemic.  He outline rules that contribute to 1) how to get sick, 2) how to get sicker (if you are already sick), and 3) how to stay well (or get better, if you are not so well to begin with).

Steven James’s Totally Subjective, Nonscientific Guide to Illness and Health: Ten-Step Programs

How to Get Sick

·       Don’t pay attention to your body. Eat plenty of junk food, drink too much, take drugs, have lots of unsafe sex with lots of different partners—and, above all, feel guilty about it. If you are overstressed and tired, ignore it and keep pushing yourself.

·       Cultivate the experience of your life as meaningless and of little value.

·       Do the things you don’t like, and avoid doing what you really want. Follow everyone else’s opinions and advice, while seeing yourself as miserable and “stuck.”

·       Be resentful and hypercritical, especially toward yourself.

·       Fill your mind with dreadful pictures, and then obsess over them. Worry most, if not all, of the time.

·       Avoid deep, lasting, intimate relationships.

·       Blame other people for all your problems.

·       Do not express your feelings and views openly and honestly. Other people wouldn’t appreciate it. If at all possible, do not even know what your feelings are.

·       Shun anything that resembles a sense of humor. Life is no laughing matter!

·       Avoid making any changes that would bring you greater satisfaction and joy.

 How to Get Sicker (If You’re Already Sick)

·       Think about all the awful things that could happen to you. Dwell upon negative, fearful images.

·       Be depressed, self-pitying, envious, and angry. Blame everyone and everything for your illness.

·       Read articles, books, and newspapers, watch TV programs, surf the net, and listen to people who reinforce the viewpoint that there is NO HOPE. You are powerless to influence your fate.

·       Cut yourself off from other people. Regard yourself as a pariah. Lock yourself up in your room and contemplate death.

·       Hate yourself for having destroyed your life. Blame yourself mercilessly and incessantly.

·       Go to see lots of different doctors. Run from one to another, spend half your time in waiting rooms, get lots of conflicting opinions and lots of experimental drugs, starting one program after another without sticking to any.

·       Quit your job, stop work on any projects, give up all activities that bring you a sense of purpose and fun. See your life as essentially pointless, and at an end.

·       Complain about your symptoms, and if you associate with anyone, do so exclusively with other people who are unhappy and embittered. Reinforce each other’s feelings of hopelessness.

·       Don’t take care of yourself. What’s the use? Try to get other people to do it for you, and then resent them for not doing a good job.

·       Think how awful life is, and how you might as well be dead. But make sure you are absolutely terrified of death, just to increase the pain.

 

How to Stay Well (Or Get Better, If You’re Not So Well to Begin With)

·       Do things that bring you a sense of fulfillment, joy, and purpose, that validate your worth. See your life as your own creation and strive to make it a positive one.

·       Pay close and loving attention to yourself, tuning in to your needs on all levels. Take care of yourself, nourishing, supporting, and encouraging yourself.

·       Release all negative emotions—resentment, envy, fear, sadness, anger. Express your feelings appropriately; don’t hold onto them. Forgive yourself.

·       Hold positive images and goals in your mind, pictures of what you truly want in your life. When fearful images arise, refocus on images that evoke feelings of peace and joy.

·       Love yourself, and love everyone else. Make loving the purpose and primary expression of your life.

·       Create fun, loving, honest relationships, allowing for the expression and fulfillment of needs for intimacy and security. Try to heal any wounds in past relationships, as with old lovers, and with your mother and father.

·       Make a positive contribution to your community, through some form of work or service that you value and enjoy.

·       Make a commitment to health and well-being, and develop a belief in the possibility of wholeness. Develop your own healing program, drawing on the support and advice of experts without becoming enslaved to them.

·       Accept yourself and everything in your life as an opportunity for growth and learning. Be grateful. When you fuck up, forgive yourself, learn what you can from the experience, and then move on.

·       Keep a sense of humor.

As you go into the New Year, remind yourself that life has choices.

 


Toning quiets the mind and increases HRV more quickly than mindfulness practice

Adapted from: Peper, E., Pollack, W., Harvey, R., Yoshino, A., Daubenmier, J. & Anziani, M. (2019). Which quiets the mind more quickly and increases HRV: Toning or mindfulness? NeuroRegulation, 6(3), 128-133. 

Disruptive thoughts, ruminations and worrying are common experiences especially when stressed. Numerous clinical strategies such as cognitive behavioral therapy attempt to teach clients to reduce negative ruminations (Kopelman-Rubin, Omer, & Dar, 2017). Over the last ten years, many people and therapists practice meditative techniques to let go and not be captured by negative ruminations, thoughts, and emotions.  However, many people continue to struggle with distracting and wandering thoughts.

Just think back when you’re upset, hurt, angry or frustrated. Attempting just to observe without judgment can be very, very challenging as the mind keeps rehearsing and focusing on what happened. Telling yourself to stop being upset often doesn’t work because your mind is focused on how upset you are. If you can focus on something else or perform physical activity, the thoughts and feelings often subside.

Over the last fifteen years, mindfulness meditation has been integrated and adapted for use in behavioral medicine and psychology (Peper, Harvey, & Lin, 2019). It has also been implemented during bio- and neurofeedback training (Khazan, 2013; Khazan, 2019).  Part of the mindfulness instruction is to recognize the thoughts without judging or becoming experientially “fused” with them. A process referred to as “meta-awareness” (Dahl, Lutz, & Davidson, 2015). Mindfulness training combined with bio- and neurofeedback training can improve a wide range of psychological and physical health conditions associated with symptoms of stress, such as anxiety, depression, chronic pain, and addiction (Creswell, 2015, Khazan, 2019).

Mindfulness is an effective technique; however, it may not be more effective than other self-regulations strategies (Peper et al, 2019). Letting go of worrying thoughts and rumination is even more challenging when one is upset, angry, or captured by stressful life circumstances. Is it possible that other strategies beside mindfulness may more rapidly reduce wandering and intrusive thoughts?  In 2015, researchers van der Zwan, de Vente, Huiznik, Bogels, & de Bruin found that physical activity, mindfulness meditation and heart rate variability biofeedback were equally effective in reducing stress and its related symptoms when practiced for five weeks.

Our research explored whether other techniques from the ancient wisdom traditions could provide participants tools to reduce rumination and worry. We investigated the physiological effects and subject experiences of mindfulness and toning.  Toning is vocalizing long and sustained sounds as a form of mediation. (Watch the video  the toning demonstration by sound healer and musician, Madhu Anziani  at the end of the blog.)

COMPARING TONING AND MINDFULNESS

The participants were 91 undergraduate college students (35 males, 51 females and 5 unspecified; average age, 22.4 years, (SD = 3.5 years).

After sitting comfortably in class, each student practiced either mindfulness or toning for three minutes each. After each practice, the students rated the extent of mind wandering, occurrence of intrusive thoughts and sensations of vibration on a scale from 0 (not all) to 10 (all the time).  They also rated pre and post changes in peacefulness, relaxation, stress, warmth, anxiety and depression. After completing the assessment, they practice the other practice and after three minutes repeated the assessment.

The physiological changes that may occur during mindfulness practice and toning practice was recorded in a separate study with 11 undergraduate students (4 males, 7 females; average age 21.4 years. Heart rate and respiration were monitored with ProComp Infiniti™ system (Thought Technology, Ltd., Montreal, Canada).  Respiration was monitored from the abdomen and upper thorax with strain gauges and heartrate was monitored with a blood volume pulse sensor placed on the thumb.

After the sensors were attached, the participants faced away from the screen so they did not receive feedback.  They then followed the same procedure as described earlier, with three minutes of mindfulness, or toning practice, counterbalanced.  After each condition, they completed a subjective assessment form rating experiences as described above.

RESULTS:  SUBJECTIVE FINDINGS

Toning was much more successful in reducing mind wandering and intrusive thoughts than mindfulness. Toning also significantly increased awareness of body vibration as compared to mindfulness as shown in Figure 1.0 Intrusive wandering thoughts comparison

Figure 1. Differences between mindfulness and toning practice.

There was no significant difference between toning and mindfulness in the increased self-report of peacefulness, warmth, relaxation, and decreased self-report of anxiety and depression as shown in Figure 2.

Figure 2. No significant difference between toning and mindfulness practice in relaxation or stress reports.0 relax comparison

RESULTS: PHYSIOLOGICAL FINDINGS

Respiration rate was significantly lower during toning (4.6 br/min) as compared to mindfulness practice (11.6 br/min); heart rate standard deviation (SDNN) was much higher during toning condition (11.6) (SDNN 103.7 ms) than mindfulness (6.4) (SDNN 61.9 ms). Two representative physiological recording are shown in Figure 3.

0 physiological comparison black white a

Figure 3. Representative recordings of breathing and heart rate during mindfulness and toning practice. During toning the respiration rate (chest and abdomen) was much slower than during mindfulness and baseline conditions.  Also, during toning heart rate variability was much larger than during mindfulness or baseline conditions.

DISCUSSION

Toning practice is a useful strategy to reduce mind wandering as well as inhibit intrusive thoughts and increase heart rate variability (HRV). Most likely toning uses the same neurological pathways as self-talk and thus inhibits the negative and hopeless thoughts. Toning is a useful meditation alternative because it instructs people to make a sound that vibrates in their body and thus they attend to the sound and not to their thoughts.

Physiologically, toning immediately changed the respiration rate to less than 6 breaths per minute and increases heart rate variability. This increase in heart rate variability occurs without awareness or striving. We recommend that toning is integrated as a strategy to complement bio-neurofeedback protocols. It may be a useful approach to enhance biofeedback-assisted HRV training since toning increases HRV without trying and it may be used as an alternative to mindfulness, or used in tandem for maximum effectiveness.

TAKE HOME MESSAGE

1) When people report feeling worried and anxious and have difficulty interrupting ruminations that they first practice toning before beginning mindfulness meditation or bio-neurofeedback training.

2) When training participants to increase heart rate variability, toning could be a powerful technique to increase HRV without striving

TONING DEMONSTRATION AND INSTRUCTION BY SOUND HEALER MADHU ANZIANI

For the published article see: Peper, E., Pollack, W., Harvey, R., Yoshino, A., Daubenmier, J. & Anziani, M. (2019). Which quiets the mind more quickly and increases HRV: Toning or mindfulness? NeuroRegulation, 6(3), 128-133.

REFERENCES

Creswell, J. D. (2015). Mindfulness Interventions. Annual Review of Psychology, 68, 491-516.

Dahl, C. Lutz, A., & Davidson, R. J. (2015). Reconstructing and deconstructing the self: Cognitive mechanisms in meditation practice. Trends in Cognitive Science, 19(9), 515-523.

Khazan, I. Z. (2013). The Clinical Handbook of Biofeedback: A Step-by-Step Guide for Training and Practice with Mindfulness. John Wiley & Sons.

Khazan, I. Z. (2019). Biofeedback and Mindfulness in Everyday Life.  New York: W. W. Norton & Company.

Kopelman-Rubin, D., Omer, H., & Dar, R. (2017). Brief therapy for excessive worry: Treatment model, feasibility, and acceptability of a new treatment. Journal of Psychotherapy Integration, 29(3), 291-306. 

Peper, E., Harvey, R., & Lin, I-M. (2019).  Mindfulness training has themes common to other technique. Biofeedback. 47(3),

van der Zwan, J. E., de Vente, W., Huizink, A. C., Bogels, S. M., & de Bruin, E. I.  (2015). Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: A randomized controlled trial. Applied Psychophysiology and Biofeedback, 40(4), 257-268. https://doi.org/10.1007/s10484-015-9293-x

 


Hope for teens with pain

Erik Peper, PhD and Rachel Zoffness, PhD*

 KM was 14 years old when he came to my (Zoffness) office for treatment. He’d been diagnosed with migraine and cyclical vomiting syndrome and had been in bed for about 3 years. He had long, unwashed hair; was a sickly, pasty white; and rocked himself back and forth from the pain. He’d seen 15 doctors and had been prescribed 30 medications, including occipital nerve injections and Thorazine. Nothing had worked. Like most teens with chronic pain, KM was depressed, stressed, and terrified he’d never get his life back.

We started Cognitive Behavioral Therapy (CBT), beginning with pain neuroscience education. This involved teaching KM and his family how pain works in the brain, and how thoughts, emotions, physical sensations and behaviors work together to trigger and maintain flares. He then learned a variety of cognitive, behavioral and mind-body techniques to help manage and change pain. His parents received parent-training to support him behind the scenes. After a few weeks of treatment, KM was able to get out of bed and walk to the corner mailbox. After a few more weeks, he was able to walk his dog to the dog park and get a haircut. Within a few months he was jogging around the block, then running. As his functioning increased, his brain desensitized and his body strengthened, his pain started to recede. Gradually he returned to school and social relationships, eventually rejoining his soccer team. I attended his high school graduation a year ago. He got onstage and told the audience that, if you’d told him 4 years ago that he’d graduate high school, he’d never have believed you. He is currently in college, successfully managing his pain, living his important life.

Chronic pain (CP) in teens can be devastating. Teens are already tasked with managing the turbulence of hormone changes, social stress, academic stress, social media, family dynamics, and developing autonomy and independence. CP impacts not only the teen, but also the entire family. Because CP is framed as a biomedical problem, it is frequently treated with opioids and other minimally-helpful (and sometimes harmful) medications. Opioids are ineffective for long-term treatment of chronic pain, and are only useful in acute crises or to control pain at the end of life (Dowell, 2016; King et al, 2011).

Although we typically think of chronic pain as an issue primarily affecting adults coping with issues such as post-surgical pain and arthritis, CP affects up to 1 in 3 youth in the USA – more than 10 million children and teens (Friedrichsdorf,  2016; ).  Pain impacts self-esteem, hope, and functioning, relegating teens to their beds and denying them normal educations and healthy social interactions.  Like adults, teens often feel powerless and blamed.  In a superb workbook, The Chronic Pain & Illness Workbook for Teens, psychologist Rachel Zoffness describes what pain is; how pain is constructed by the brain; how mind, body and emotions interact to affect pain; and offers a sequence of assessments and practices to reduce pain and improve health in language children and teens can easily understand.  The approach combines cognitive behavioral therapy (CBT) with imagery, mindfulness, breathing, handwarming with biofeedback, and somatic practices (Turk & Gatchel, 2018; Peper, Gibney, & Holt, 2002).

This simple graphic of the pain cycle is helpful to clients (see Fig. 1).

pain cycle

 Fig 1. CBT Pain Cycle

The pragmatic practices in this book offer tools and guided instructions that any child or teen can use for themselves, with parents, or with health providers.  Therapists can use and adapt these activities with their clients of all ages. Although these scientifically-supported pain management techniques are written for teens, they can equally be used with adults. Below are two of many different practices described in the book that are useful for chronic pain.

Practice 1: Assessment: What sets off your pain?

The first step is to help youth identify factors that “trigger” – or set off – their pain. It’s helpful to define a trigger as a difficult emotion, situation, or event that causes pain to increase. Difficult situations and events of all kinds – biological, social, etc (situational triggers) can trigger difficult thoughts and emotions (cognitive and emotional triggers), and vice versa. For example, Adam was recovering from back surgery (situational trigger), got into a big fight with his sister about the car (situational trigger), and became angry and frustrated (emotional trigger). He felt the anger in his body, his muscles got hot and tight, and his back started spasming. Gina is an example of the reverse. She believed that nothing could cure her fibromyalgia (cognitive trigger), which made her feel depressed and hopeless (emotional trigger). She stayed home for weeks on end without school, friends, or distractions (situational trigger), and started feeling worse.

We can help youth with pain by asking:

  • What emotions trigger your pain?
    • Frustration
    • Anger
    • Stress
    • Anxiety
    • Loneliness
    • Sadness
  • What situations trigger your pain?
    • Not getting enough sleep
    • Arguing with family members
    • Inflammation after physical therapy
    • Missing fun events because you’re sick
    • Thinking about upcoming exams
    • Doctor’s appointments and hospital visits

Sometimes, the teen needs to keep a log for a week to identify the situations or triggers related to the pain.  Once these have been identified then the teen can explore strategies to reduce the negative reactivity triggered by the emotions or situations.

Practice 2: Changing the voice of pain (Note: this is a summary of a longer activity)

One technique we use in CBT for chronic pain is identifying and tracking cognitive distortions, also known as “thinking traps.” I (Zoffness) call these traps “Pain Voice.” This is the catastrophic, pessimistic, critical, and negative voice that tells us awful, worrisome things, particularly about our pain or health.

For example:

Pain Voice pretends she can predict the future, and says it’s going to be terrible. She says: “You’ll never get better. Nothing will ever help you.” But since she can’t predict the future (who can?), Pain Voice is a liar! Pain Voice is also very bossy about what you can and can’t do: “You can’t see your friends this week,” or “You can’t go for a bike ride, and you definitely can’t have any fun.” Science teaches us that negative thoughts increase pain by turning up the brain’s “pain dial,” so we must make sure not to listen to or believe them. To stop Pain Voice, we first catch negative thoughts.

As soon as you learn how to recognize Pain Voice, you gain the power to change negative thoughts into more helpful “Wise Voice” thoughts. One way to bust Pain Voice is to start tracking your negative thoughts. First, list these critical, self-defeating, catastrophic Pain Voice thoughts. Notice if they’re helpful or harmful. Then check and question them, thoughtfully determining whether they’re the truth or a trap. Next, gather evidence as to why Pain Voice might be wrong by asking yourself, is this thought a fact? What evidence do I have that this thought might not be true? What else might happen other than what I’m predicting? Write out your Wise Voice responses, and use them to fight back every time you hear Pain Voice!

Jason’s example: Jason had terrible, daily back pain and hadn’t gone outside in 6 weeks. His friends texted, inviting him to watch a movie. Immediately he heard the thought, “I can’t go, I’m broken. If I leave my house my pain will spike and I won’t be able to function.” He recognized this as his Pain Voice and knew he had to fight back. He sat down with his worksheet and filled in the answers: yes, the thoughts were harmful, not helpful, and they were trying to trap him! He examined the evidence and wrote the Wise Voice thought, “This negative prediction is not a fact, it’s a trap. I’ve had back pain for 2 years, and sometimes going out and seeing friends actually reduces my pain.” Tuning into his Wise Voice gave him the strength to get the social support and distraction he needed to feel a little better! He went to his friend’s house, watched movies, ate popcorn, giggled, and had a great time. For the first time in 6 weeks, his pain went down. An example of his log is shown in table 1.

 Situation

Pain Voice

Helpful or Harmful?

Trap or

Truth

Wise Voice
Returning to school after missing 3 weeks If I go back to school, I’ll be so far behind that I won’t understand anything the teacher is talking about. Harmful Trap This negative prediction is not a fact. I’m smart and competent, I’ll probably understand some things. Last time I was behind, I made up the work and everything was fine.
 

 

Pain flare-up

 

 

 

I can’t handle this! Harmful Trap This negative prediction is not a fact. I’ve had 42 pain flare-ups this year, and I handled all of them. I’ve proven that I’m strong and resilient. There is a 0% chance I can’t handle this.

Table 1. Example from Jason’s log

Summary: There is hope for youth with chronic pain. Interventions like CBT, mindfulness, biofeedback and other mind-body approaches are scientifically-supported and have evidence of effectiveness. Adhering to the biopsychosocial model – targeting biological, psychological and social factors – is proven to be the most effective treatment for chronic pain across conditions and ages. For more information, see Rachel Zoffness’ book, The chronic pain & illness workbook for teens,  for pragmatic treatment practices and user-friendly pain education. 

book cover

References

Dowell, D., Haegerich, T. M., & Chou, R. (2016). CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA315(15), 1624-1645.

Friedrichsdorf, S. J., Giordano, J., Desai Dakoji, K., Warmuth, A., Daughtry, C., & Schulz, C. A. (2016). Chronic Pain in Children and Adolescents: Diagnosis and Treatment of Primary Pain Disorders in Head, Abdomen, Muscles and Joints. Children (Basel, Switzerland)3(4), 42. doi:10.3390/children3040042

King, S., Chambers, C., Huguet, A., MacNevin, R., McGrath, P., Parker, L., & MacDonald, A. (2011). The epidemiology of chronic pain in children and adolescents revisited: a systematic review. Pain152(12), 2729-2738.

Peper, E. Gibney, K.H., & Holt, C.F. (2002). Make Health Happen-Training Yourself to Create Wellness. Kendall Hunt Publishing. ISBN-13: 978-0787293314

Turk, D. C., & Gatchel, R.J. (2018). Psychological approaches to pain management-A Practionere’s Handbook.  New York: The Guilford Press, ISBN-13: 978-1462528530

Zoffness, R. (2019). The Chronic Pain & Illness Workbook for Teens. Oakland, CA; New Harbinger Publications, ISBN: 978168403352

*Dr. Rachel Zoffness is a pain psychologist, consultant, writer and educator in Northern California’s East Bay specializing in chronic pain and illness.

 


Provide hope and purpose: Focus on the good for all!

Erik Peper and Derek DoylefigureSource: https://devinepartners.com/2015/12/03/positive-news-sheds-light-this-winter/

“Fear stops action; hope initiate action.”

-Tali Sharot, PhD., author of Influential mind

Observe how you feel after you read the following two news reports:

Report 1. The graduating class at Atlanta’s historically black Morehouse College got the surprise of a lifetime on Sunday when commencement speaker and billionaire Robert F. Smith announced that he wasn’t just there to give the nearly 400 graduating seniors a nice motivational speech — he was also going to pay off their student debt.

“On behalf of the eight generations of my family that have been in this country, we’re gonna put a little fuel in your bus,” Smith, the founder of the investment firm Vista Equity and the richest black person in the United States, told the newest graduates of the prestigious all-male college. “This is my class, 2019. And my family is making a grant to eliminate their student loans.” (Lockhart, 2019).

News report 2: Gerry Dean Zaragoza, 26, is accused of fatally shooting his father and brother at a San Fernando Valley apartment before killing his ex-girlfriend at a gas station in North Hollywood, Los Angeles authorities said. He then is thought to have killed someone on a bus as police were searching for him during the 12-hour manhunt, Los Angeles police said. (Andrew Blankstein and Doha Madani (2019).

Which story made you feel more fearful and defensive; which story made you feel more positive and likely to help others?

The effect of incessant news

With the headlines screaming about killing, the endless repeating and commenting on tweeting lies  that evoke hatred, the creation of concentration camps and separating children from their immigrant mothers, or Representatives and Senators  focusing on winning the next election instead of focusing on the common good, we become fearful, discouraged and hopeless about the future. Surrounded by negative news we become apathetic, freeze in place, and close down to protect against loss.

Having traveled in the last few years to Japan, India, the Netherlands, Spain, Poland, Italy, and Canada, we observed that the USA is becoming a failed state.  The failing infrastructure of bridges and roads, the student debt that locks students into years of servitude, and the millions of people bankrupted by medical bills are only a few of the symptoms of our failing state and lack of positive vision. The more we allow ourselves to be bombarded by negative visual and auditory messages, the more we feel hopeless and powerless. We do not want to react out of hatred and disgust.  We want to focus on possibilities and be motivated by positive role models that will encourage positive action. Where is the inspirational vision for the future and the “Restoration Story” of how to get there? (Monbiot, 2019). We need a common mission for all to contribute to in our own unique and special way.

The images, words and thoughts that we allow to enter our brain become the hypnotic template for tomorrow’s action.  There is a  difference in saying, “I do not want hatred, fear and degrading commentary” versus “I want to learn from the inspirational work, aspirations and visions of nation builders and participate in this process.”

If you say to yourself, “I do not want to eat a piece of pie,” then that thought  evokes the image of piece of pie, which you may reject by saying “No.” This means that you are rehearsing eating the sweets and thus strengthening the desire.  If on the other hand you say to yourself, ‘I choose to eat more fruits and vegetables,” you are strengthening that desire. The thoughts help you identify the presence of fruits and vegetables more easily. Just as when you plan a vacation to Hawaii. All of a sudden there seems to be adds about Hawaii everywhere.

What we remember the next day depends upon what we focused upon earlier.  What we focus our attention and emotions on before going to sleep is what is stored in permanent memory and more likely to be remembered and acted upon the next day. Be careful what to look at and watch before going to sleep. It also impacts our physical and mental health. Children whose parents were emotionally upset and continue to watch the collapse of the World Trade Center buildings many times during the 9/11 terrorist attack experienced more stress symptom (including difficulty concentrating, difficulty falling asleep, losing temper/irritability, and nightmares) and 47% were worried about their own safety or the safety of loved ones (Hooker and Friedman, 2005).

Ask yourself, what images, speech and thoughts  you allow to enter your brain? In most cases, the news focuses upon destructive acts that evoke fear and implicitly reduce actual action.  Similarly, we can watch violent and toxic program on different streaming media such as Netflix, YouTube or Amazon Prime. As a result, we see the world much more dangerous than it  is.  Thus, we hover over children because we now think that they would be abducted by strangers (Amber Alert).  This increases the  public’s moral panic yet it is not clear if there has been an actual  increase in stranger child abduction in the last fifty years (Zgoba, 2006).

People who watch the news before going to sleep perceive their neighborhood as significantly more dangerously as compared to those who do not watch the news.  Because they believe their neighborhood is more dangerous, they avoid going out and by not going out make the neighborhood less communal and friendly. The information supports our negativity bias which focuses our attention on things that are dangerous or threatening (Soroka & McAdams, 2015)..

We have a choice to focus on what we would like instead of allowing to be bombarded by negative toxic messages and images.  This does not mean we stick our heads in the sand and are unaware, it means that we choose carefully how to balance the messages we receive. Instead of watching and listening to repeated negative news, listen or read (to) the news once during the day and then fill the day with positive news that evokes hope, good deeds and better possibilities for our communities.

Consider an experiment for a day or so..

Try searching and discovering some good news to share with family and friends. Watch their reaction and then extend the experiment for a few days seeking and sharing positive news.

Watch and listen to positive media such as:

  • GoodNews Network: The website, with its archive of 21,000 positive news stories from around the globe, confirms what people already know—that good news itself is not in short supply; the broadcasting of it is. https://www.goodnewsnetwork.org
  • TED Ideas worth spreading. TED is a global community, welcoming people from every discipline and culture who seek a deeper understanding of the world. We believe passionately in the power of ideas to change attitudes, lives and, ultimately, the world. https://www.ted.com/#/

After a few days or a week, ask how do you feel?

  • Are you more optimistic?
  • Do you feel safer and more relaxed?
  • Is sleep more restorative?

If you are like many others, you would feel slightly more hopeful, optimistic and positive.

What we allow to enter our brain becomes the template for the choices we make.

References

Blankstein, A. & Madani, D. (2019). Gunman suspected killing least three people in California shooting spree. NBC News, July 26, 2019.

Hooker, K.E., & Friedman, H. (2005). Responding to the psychological needs of children after 9/11: A review of the literature.

Lockhart, P.R. (2019). The Morehouse debt cancellation and the growing black student debt crisis. VOX Media. May 20, 2019.

Monbiot, G. (2019). The new political story that could change everything. TEDSummit.

Sharot, T. (2019). The influential mind-What the brain reveals about our power to change others. New York: Henry Holt and Company

Soroka, S. & McAdams, S. (2015). News, politics, and negativity. Political Communication, 32(1), 1-22.

Zgoba, K.M. (2006). Spin doctors and moral crusaders: the moral panic behind child safety legislation. Criminal Justice Studies, 17(4), 385-404.